
REPORT DOCUMENTATION PAGE Form Aq~ved

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions. searchiig existing data aou enng
and maintaining the data needed, and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 3ollecdion of information, including
suggestions for reducing this burden, to Washington Veadquariers Service, Directorate for Information Operations and Reports, 1215 Jefferson Davis Ighway, Suite 1204. Arington. VA
22202-4302. and to the Office of Information and Regulatory Affairs, Office of Management and Budget. Washington, DC 20503.

1. AGENCY USE (Leave 2. REPORT 3. REPORT TYPE AND DATES
Final: 15 October 1993 to 15 October 1995

4. TITLE AND 5. FUNDING

TLD Comanche VAX/MIL-STD-1750 A Ada Compiler System, Version
3.4.C Digital VAXstation 4000 Model 60 under VMS, 5.5 =)
TLD MIL-STD-1750A Multiple Processor Simulator (TLDmps) under AD--A273 7086.]LU Real lime Executive klLurtx), 3.4.u, 931012W1.11329

Authors: 1111N 1111 1111 1111111i I 1I 111111111, 1111
Wright-Patterson AFB OH 45433-6503

7. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING
ORGANIZATION

Ada Validation Facility, Control Facility ASD/SCEL
Bldg. 676, Rm 135 AVR'-VSR-575.0993
Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSORING/MONITORING

Ada Joint Program Office AGENCY

The Pentagon, Rm 3E118
Washington, DC 20301-3080

11. SUPPLEMENTARY

12a DISTRIBUTIONIAVAILABILITY 12b. DISTRIBUTION

App-oved for public release; distribution unlimited.

13. (Maximum 200

TLD Comanche VAX/MIL-STD-1750A Ada Compiler System, Version 3.4.C
Host: Digital VAXstation 4000 Model 60 under VMS, 5.5
Target: TLD MIL-STD-1750A Multiple Processor Simulator (TLDmps) under TLD Real Time
Executive (TLDrtx), 3.4.C

DEC 149W

14. SUBJECT 15. NUMBER OF

Ada programming language, Ada Compiler Val. Summary Report, Ada c
Compiler, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL - 11S-15A, AJPO

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN Standard Form 298, (Rev. 2-89)

Presofibed by ANSI Std.

AVF Control Number: AVF-VSR-575.0993
Date VSR Completed: 15 October 1993

93-08-17-TLD

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 931012W1.11329
TLD Systems, Ltd.

TLD Comanche VAX/AIL-STD-1750A Ada Compiler System, Version 3.4.C
Digital VAXstation 4000 Model 60 under VMS, 5.5 ->

TLD MIL-STD-1750A Multiple Processor Simulator (TLDmps)
under TLD Real Time Executive (TLDrtx), 3.4.C

(Final)

Prepared By:
Ada Validation Facility

645 CCSG/SCSL
Wright-Patterson AFB OH 45433-6503

93-30259
gIlll, Fiji Il93 12 13 07

Certificate Information

am.

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on 12 October 1993.

Compiler Nam and Version: TLD Comanche VAX/NIL,-STD-1750A Ad& Compiler System,
Version 3.4.C

Host Computer System: Digital VAXstation 4000 Model 60
under VMS, 5.5

Target Computer System: TLD MIL-STD-1750A Multiple Processor Simulator (TLDmps)
under TLD Real Time Executive (TLDrtx), 3.4.C

Customer Agreement Number: 93-08-17-TLD

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate 931012W1.11329
is awarded to TLD Systems, Ltd. This certificate expires two years after
MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

"Valida ion Facilty
Dale E. Lange
AVF Manager
645 CCSG/SCSL
Wright-Patterson AFB OH 45433-6503

S 42LDT1C- QUALITY INSPECOTED 3

Direct r, ter and Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
M. Dirk Rogers, Major, USAF
Acting Director
Department of Defense
Washington DC 20301

S~I

DECLARATION OF CONFORMANCE

Customer: TLD Systems, Ltd.

Ada Validation Facility: 645 C-CSG/SCSL
Wright-Patterson AFB OH 45433-6503

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: TLD Comanche VAX/MIL-STD-1750A Ada
Compiler System, Version 3.4.C

Host Computer System: Digital VAXstation 4000 Model 60
executing VAX/VMS 5.5.

Target Computer System: TLD MIL-STD-1750A Multiple Processor
Simulator (TLDmps) under TLD Real Time
Executive (TLDrtx), Version 3.4.C

Customer's Declaration

I, the undersigned, representing TLD Systems, Ltd., declare that TLD
Systems, Ltd. has no knowledge of deliberate deviations from the Ada
Language Standard ANSI/MIL-STD-1815A in the implementation listed in this
declaration executing in the default mode. The certificates shall be
awarded in TLD Systems, Ltd.'s corporate name.

______________-_Date: 11 October 1993
TLD Systems , Ltd.
Terry L. Dunbar, President

VAX/1750A/TLDmps Page 1

TABLE OF cans

CHAPTER 1 INTRODUCTICt

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 PEFERCWW . 1-2
1.3 ACVC TEST CLASSES 0 . . . 1-2
1.4 DEFINITIC OF TERMS.1-3

CHAPTER 2 IMPE TATICN DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS2-1
2.3 TEST DIFICATIONS........ 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIROWMSqT 3-1
3.2 SUMMARY OFTEST RESUTSL.S. 3-1
3.3 TEST EXECUTIJNI. 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATICN SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro92] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to [Pro92J. A
detailed description of the ACVC may be found in the current ACVC User's Guide
[UG89].

1.1 USE OF THIS VALIDATIN SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are accurate
and complete, or that the subject implementation has no nonconformities to the
Ada Standard other than those presented. Copies of this report are available
to the public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language, ANSI/MIL-STD-1815A,
February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

(UG891 Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A, B,
C, D, E, and L. The first letter of a test name identifies the class to which
it belongs. Class A, C, D, and E tests are executable. Class B and class L
tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRT13, and the
procedure CHECK FILE are used for this purpose. The package REPORT also
provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of text
files written by some of the Class-C tests for Chapter 14 of the Ada Standard.
The operation of REPORT and CHECK FILE is checked by a set of executable
tests. If these units are not operating correctly, validation testing is
discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of the
Ada Standard are detected. Some of the class B tests contain legal Ada code
which nmust not be flagged illegal by the compiler. This behavior is also
verified.

Class L tests check that an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled units. Errors are
expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list of
the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for this
implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see section 2.1), and possibly
removing some inapplicable tests (see section 2.2 and [UG89J).

In order to pass an ACVC an Ada implementation must process each test of the
customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added to a
given host and target computer system to allow transformation
of Ada programs into executable form and execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or part

of a program and also for all or part of the data necessary for
the execution of the program; executes user-written or
user-designated programs; performs user-designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

Conformity Fulfillment by a product, process, or service of all

1-3

INTIICI I

requirements specified.

Customer An individual or corporate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for which

validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually, operating
systems are predominantly software, but partial or complete
hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro92].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate for
this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203A C34006D C35508I C35508J
C35508M C35508N C35702A C35702B B413088 C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H 883025B B83025D C83026A 8830268 C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BDlB02B BDIBO6A ADIBO8A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A4lA CD2A41E CD2A87A CD2BI5C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE31l1A CE34118 CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant for
a given Ada implementation. Reasons for a test's inapplicability may be
supported by documents issued by the ISO and the AJPO known as Ada
Comwentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for the
reasons indicated; references to Ada Commentaries are included as appropriate.

2-1

IMPLETATION DEPENDENCIES

The following 285 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Z (21 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45521F..Z (21 tests)
C45524F..Z (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..z (21 tests)

The following 21 tests check for the predefined type SHORT INTEGER; for
this implementation, there is no such type:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V C86006D
CD7101E

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG INTEGER, or
SHORT INTEGER; for this implementation, there is no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

A35801E checks that FLOAT'FIRST..FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this implementation,
that range exceeds the range of safe numbers of the largest predefined
floating-point type and must be rejected. (See section 2.3.)

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is lesa than 47.

C45536A, C46013B, C46031B, C46033B, and C46034B contain length clauses
that specify values for 'SMALL that are not powers of two or ten; this
implementation does not support such values for 'SMALL.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various-floating-point operations lie outside the range of the base type;
for this implementation, MACHINE OVERFLOWS is TRUE.

D64005F..G (2) tests use 10 levels of recursive procedure calls nesting;
this level of nesting for procedure calls exceeds the capacity of the
compiler.

2-2

IMPLEMETATION DEPENDENCIES

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA3004E..F (2 tests) check that a program will execute when an optional
body of one of its library packages is made obsolete; this implementation
introduces additional dependences of the package declaration on its body
as allowed by LRM 10.3(8), and thus the library unit is also made
obsolete. (See Section 2.3.)

LA5007S..T (2 tests) check that a program cannot execute if a needed
library procedure is made obsolete by the recompilation of a library unit
named in that procedure's context clause; this implementation determines
that the recompiled unit's specification did not change, and so it does
not make the dependent procedure obsolete. (See Section 2.3.)

CD1009C checks whether a length clause can specify a non-default size for
a floating-point type; this implementation does not support such sizes.

CD2A53A checks operations of a fixed-point type for which a length clause
specifies a power-of-ten TYPE'SMALL; this implementation does not support
decimal 'SMALLs. (See section 2.3.)

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length clauses to
specify non-default sizes for access types; this implementation does not
support such sizes.

The following 264 tests check operations on sequential, text, and direct
access files; this implementation does not support external files (See
Section 2.3 regarding EE3412C):

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) 'E3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..L ,3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE3410F CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)

2-3

IMPMENTATION DEPENDECIES

CE3606A..B (2) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an attempt to
create a file and expect NAME ERROR to be raised; this implementation
does not support external filel and so raises USE ERROR. (See section2.3.)

2.3 TEST MODIFICATICNS

Modifications (see section 1.3) were required for 59 tests.

Nb: CD2A81A is subject to two, distinct modifications as described below (the
test name is marked with an asterisk).

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22005Z B24009A B25002A B26005A B27005A B44004D
B59001E B73004B B83012A B83033B BA2001E BA3006A
BA3013A

C34009D and C34009J were graded passed by Evaluation Modification as directed
by the AVO. These tests check that 'SIZE for a composite type is greater than
or equal to the sum of its components' 'SIZE values; but this issue is
addressed by AI-00825, which has not been considered; there is not an obvious
interpretation. This implementation represents array components whose length
depends on a discriminant with a default value by implicit pointers into the
heap space; thus, the 'SIZE of such a record type might be less than the stm
of its components 'SIZEs, since the size of the heap space that is used by the
varying-length array components is not counted as part of the 'SIZE of the
record type. These tests were graded passed given that the Report.Result
output was "FAILED" and the only Report. Failed output was "INCORRECT
'BASE'SIZE", from line 195 in C34009D and line 193 in C34009J.

A35801E was graded inapplicable by Evaluation Modification as directed by the
AVO. The compiler rejects the use of the range FLOAT'FIRST..FLOAT'LAST as the
range constraint of a floating-point type declaration because the bounds lie
outside of the range of safe numbers (cf. LRM 3.5.7:12).

CA3004E..F (2 tests) were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests check that a program will execute when an
optional body of one of its library packages is made obsolete. This
implementation, for optimization purposes, compiles all compilation units of a
compilation into a single object module with a single set of control sections,
collectively pooled constants, with improved addressing. As a consequence,
the optional package body of these tests and its corresponding library unit
have a mutual dependence, and thus the library unit is also made obsolete.
This implementation-generated dependence is allowed by LRM 10.3(8).

2-4

IMPLENTATION DEPEDENCIES

LA5007S..T (2 tests) were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests check that a program cannot execute if a
needed library procedure is made obsolete by the recompilation of a library
unit named in that procedure's context clause. This implementation determines
that the recompiled unit's specification did not change, and so it does not
make the dependent procedure obsolete; the program executes, calling
Report.Failed. The AVO ruled that this behavior is acceptable, in light of
the intent for the revised Ada standard to permit such accommodating
recompilation; further deliberation by the AVO and ARG will determine whether
these (and many related) tests will be withdrawn.

The tests below were graded passed by Test Modification as directed by the
AVO. These tests all use one of the generic support procedures, LengthCheck
or EnumCheck (in support files LENCHECK.ADA & ENUMCHEK.ADA), which use the
generic procedure Unchecked Conversion. This implementation rejects
instantiations of Unchecked Conversion with array types that have non-static
index ranges. The AVO ruled that since this issue was not addressed by
AI-00590, which addresses required support for Unchecked Conversion, and since
AI-00590 is considered not binding under ACVC 1.11, the support procedures
could be modified to remove the use of Unchecked Conversion. Lines 40..43,
50, and 56..58 in LENCHECK and lines 42, 43, and 58..63 in ENUMCHEK were
commented out.

CD1009A CD1009I CD1009r1 CD1009V CD1009W CD1C03A
CD1C04D CD2A21A..C CD2A22J CD2A23A..B CD2A24A cD2A31A..C

*CD2A81A CD3014C CD3014F CD3015C CD3015E..F CD3015H
CD3015K CD3022A CD4061A

*CD2A81A, CD2A81B, CD2AB1E, CD2A83A, CD2A83B, CD2A83C, and CD2A83E were graded
passed by Test Modification as directed by the AVO. These tests check that
operations of an access type are not affected if a 'SIZE clause is given for
the type; but the standard customization of the ACVC allows only a single size
for access types. This implementation uses a larger size for access types
whose designated object is of type STRING. The tests were modified by
incrementing the specified size $ACC SIZE with '+ 32'.

CD2A53A was graded inapplicable by Evaluation Modification as directed by the
AVO. The test contains a specification of a power-of-10 value as 'SMALL for a
fixed-point type. The AVO ruled that, under ACVC 1.11, support of decimal
'SMALLs may be omitted.

CE2103A, CE2103B, and CE3107A were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests abort with an unhandled
exception when USE ERROR is raised on the attempt to create an external file.
This is acceptable behavior because this implementation does not support
external files (cf. AI-00332).

EE3412C was graded inapplicable by Evaluation Modification as directed by the
AVO. This test checks the operation of TEXT IO.LINE, and it assumes that
package Report uses TEXT 10. For this validation, package Report was modified
to use a more efficient character output procedure. As a consequence of the
modification to Report, a call to a Report procedure doesn't increment the

2-5

IMPLENATION DEPENDENCIES

line count, and the check at line 46 fails. The AVO ruled that this test be
graded inapplicable, and that it remain in the set of I1/ tests that is
normally not processed during on-site testing for implementations that do not
support file systems.

CE3413B was graded inapplicable by Evaluation Modification as directed by the
AVO. This test includes the expression "COUNT'LAST > 150000", which raises
CONSTRAINT ERROR on the implicit conversion of the integer literal to type
CONT since COWNT'LAST - 32,767; there is no handler for this exception, so
test execution is terminated. The AVO ruled that this behavior was
acceptable; the AVO ruled that the test be graded inapplicable because it
checks certain file operations and this implementation does not support
external files.

Many of the Class A and Class C (executable) test files were combined into
single procedures ("bundles") by the AVF, according to information supplied by
the customer and guidance from the AVO. This bundling was done in order to
reduce the processing time-compiling, linking, and downloading to the target.
For each test that was bundled, its context clauses for packages Report and
(if present) SYSTEM were commented out, and the modified test was inserted
into the declarative part of a block statement in the bundle. The general
structure of each bundle was:

WITH REPORT, SYSTEM;

PROCEDURE <BUNDLE NAME> IS

- repeated for each test

DECLARE
<TEST FILE> (a modified test is inserted here, ...]

BEGIN
<TEST NAME>; [... and invoked here)

EXCEPTION -test is not expected to reach this exception handler
WHEN OTHERS -> REPORT. FAILED("unhandled exception ");

REPORT. RESULT;
END;

- ... repeated for each test in the bundle]

END <BUNDLENAME>;

The 1293 tests that were processed in bundles are listed below; each bundle is
delimited by '<' and '>'.

<A21001A A22002A A22006B A26004A A26007A A27003A A27004A
A29002A A29002B A29002C A29002D A29002E A29002F A29002G
A29002H A290021 A29002J A29003A A2A031A> <A32203B A32203C
A32203D A33003A A34017C A35101B A35402A A35502Q A35502R
A35710A A35801A A35801B A35801F A35902C A38106D A38106E
A38199A A39005B A39005C A39005D A39005E A39005F> <A39005G
A54BO1A A54BO2A A55B12A A55B13A A55B14A A62006D A71002A
A71004A A72001A A730011 A73001J A74105B A74106A A74106B

2-6

IMPLEMENTATION DEPENDENCIES

A74106C A74205E A74205F> <A83009A A83009B A83041B A83041CA83041D A83AO2A A83A02B A83A06A A83A08A A83CO1C A83CO1D
A83CO1E A83C01F A83CO1G A83CO1H A83CO1I A83CO1J A85007DA85013B A87B59A> <AB7006A AC1015B AC3106A AC3206A AC3207A>

<ADIAO1A AD1A01B AD1DO1E AD7001B AD7005A AD7101A AD7101CAD7102A AD7103A AD7103C> <AD7104A AD7203B AD7205B> <C23001AC23003A C23006A C24002A C24002B C24002C C24003A C24003BC24003C C24106A C24113A C24113B C24113C C24113D C24113E><C24201A C24202A C24202B C24202C C24203A C24203B C24207AC24211A C25001A C25001B C25003A C25004A C26002B C26006A><C26008A C27001A C2AO01A C2AOO1B C2AO01C C2AO02A C2A006A
C2AO08A C2AO09A C2A021B> <C32107A C32107C C32108A C32108BC32111A C32111B> <C32114A C32115A C32115B> <C32117A C34001A
C34001C C34001D C34001F C34002A C34002C C34003A C34003C><C34004A C34004C C34005A C34005C> <C34005D C34005F C34005G
C34005I> <C34005J C34005L C34005M C340050> <C34005P C34005RC34005S C34005U C34006A C34006F C34006G C34006J> <C34006L
C34007A C34007D C34007F C34007G> <C340071 C34007J C34007MC34007P> <C34007R C34007S> <C34009A C34009F C34009G C34009LC34011B C34012A C34014A C34014c> <C34014E C34014G C34014H
C34014J C34014L C34014N C34014P C34014R C34014T> <C34014UC34014W C34014Y C34015B C34016B C34018A C35003A C35003BC35003D C35003F C35102A C35106A C35404A C35404C> <C35503AC35503B C35503C C35503D C35503E C35503F C35503G C35503H
C35503K> <C35503L C355030 C35503P C35504A C35504B C35505A
C35505B C35505C> <C35505D C35505E C35505F C35507A C35507B><C35507C C35507E C35507G C35507H C355071 C35507J> <C35507KC35507L> <C35706A C35706B C35706C C35706D C35706E> <C35707A
C35707B C35707C C35707D C35707E C35708A C35708B C35708CC35708D C35708E> <C35711A C35711B C35712A C35712B C35712CC35713A C35713C> <C35801D C35802A C35802B C35802C C35802D
C35802E> <C35902A C35902B C35902D C35904A C35904B C35A02AC35AO3A C35A03B C35AO3C C35A03D> <C35AO3N C35AO30 C35AO3P>

<C35AO3Q C35AO4A C35A04B C35A04C> <C35A04D C35AO4N> <C35A040C35A04P> <C35A04Q C35AO5A C35A05D C35A05N> <C35A05Q C35A06A
C35A06B> <C35AO6D C35AO6N C35A060> <C35A06P C35AO6Q C35A06RC35AO6S C35AO7A C35A07B C35A07C> <C35A07D C35AO7N C35A070
C35A07P C35AO7Q C35A08B C36003A> <C36004A C36104A C36104B
C36105B C36172A C36172B C36172C> <C36174A C36180A C36202AC36202B C36202C C36203A C36204A C36204B C36204c> <C36205AC36205B C36205C C36205D C36205E C36205F C36205G C36205H>

<C362051 C36205J C36205K C36301A C36301B C36302A C36303AC36304A C36305A> <C37002A C37003A C37003B C37005A C37006AC37007A C37008A C37008B> <C37008C C37009A C37010A C37010B
C37012A C37102B C37103A C37105A C37107A C37108B C37206AC37207A C37208A C37208B C37209A C37209B C37210A> <C37211A
C37211B C37211C C37211D C37211E C37213A C37213B C37213CC37213D> <C37213E C37213F C37213G C37213H> <C37213J C37213KC37213L C37214A> <C37215A C37215B> <C37215C C37215D C37215E
C37215F C37215G C37215H C37216A C37217A C37217B C37217C><C37304A C37305A C37306A C37307A C37309A C37310A C37312AC37402A C37403A> <C37404A C37404B C37405A C37409A C37411AC38002A C38002B C38004A C38004B C38005A C38005B C38005CC38006A C38102A C38102B C38102C C38102D C38102E C38104A

2-7

IMPLMTA•TICN DEPENEDCIES

C38107A C38107B> <C38108A C38201A C38202A C39006A C39006B
C39006D C39006E C39006G C39007A C39007B C39008A C39008B
C39008C> <C41101D C41103A C41103B C41104A C41105A C41106A
C41107A C41108A C41201D C41203A C41203B> <C41204A C41205A
C41206A C41207A C41301A C41303A C41303B C41303C C41303E
C41303F C41303G C41303I C41303J C41303K C41303M C41303N
C413030 C41303Q C41303R C41303S C41303U C41303V C41303W
C41304A> <C41304B C41306A C41306B C41306C C41307A C41307C
C41307D C41308A C41308C C41308D C41309A> <C41320A C41321AC41322A C41323A C41324A C41325A C41326A C41327A C41328A>

<C41401A C41402A C41403A C41404A C42005A C42006A C42007A
C420078> <C42007C C42007D C42007E C42007F C42007G C42007H
C420071> <C42007J C42007K C43003A C43004B C43103A C43103B
C43104A> <C43105A C43105B C43106A C43107A C43108A C43204A
C43204C C43204E C43204F> <C43204G C43204H C432041 C43205AC43205B C43205C C43205D C43205E C43205F C43205G C43205H
C43205I C43205J C43205K C43206A C43207A C43207B C43207C>

<C43207D C43208A C43208B C43209A C43210A C43211A C43212A
C43212C C43213A> <C43214A C43214B C43214C C43214D C43214EC43214F C43215A C43215B C43222A> <C43224A C44003A C44003D
C44003E C44003F C44003G C45101A C45101B C45101C C45101E
C45101G C45101H C45101I C45101K C45104A C45111A C45111B
C45111C> <C45111D C45111E C45112A C45112B C45113A> <C45114B
C45122A C45122B C45122C C45122D C45123A C45123B C45123C>

<C45201A C45201B C45202A C45202B C45210A C45211A C45220AC452208 C45220C C45220D C45220E C45220F C45231A C45231C>
<C45232A C45232B C45241A C45241B C45241C C45241D C45241E>
<C45242A C45242B C45251A C45252A C45252B C45253A C45262A>
<C45272A C45273A C45274A C45274B C45274C C45281A C45282A
C45282B C45291A C45303A C45304A C45304C> <C45321A C45321B
C45321C C45321D C45321E> <C45323A C45331A C45331D C45332A
C45342A C45343A C45344A C45345A C45345B C45345C C45345D><C45347A C45347B C45347C C45347D C45411A C45411C C45411D
C45412A C45412C> <C45413A C45421A C45421B C45421C C45421D
C45421E> <C45423A C45431A C45502A C45502C C45503A C45503C>

<C45504A C45504C C45504D C45504F> <C45505A C45521A c45521B
C45521C C45521D C45521E> <C45523A C45524A C45524B C45524C
C45524D C45524E> <C45532A C45532B C45532C C45532D C45532EC45532F C45532G C45532H C455321 C45532J C45532K C45532L>

<C45534A C45611A C45611C C45613A C45613C C45614A C45614C
C45621A C45621B C45621C C45621D C45621E> <C45622A C45624A
C45624B C45631A C45631C C45632A C45632C C45641A C45641B
C45641C C45641D C45641E> C45652A C45662A C45662B C45672A
C46011A C46012A C46012B C46012C> <C46012D C46012E> <C46013A
C46014A C46021A C46023A C46024A C46031A C46032A C46033A>

<C46041A C46042A C46043A C46043B> <C46044A C46044B C46051A
C460518 C46051C> <C46052A C46053A C46054A C47002A C47002B
C47002C C47002D C47003A C47004A C47005A C47006A C47007A>

<C47008A C47009A C47009B C48004A C48004B C48004C C48004D
C48004E C48004F C48005A C48005B C48005C C48006A C48006B>

<C48007A C48007B C48007C C48008A C48008B C48008C C48008D
C48009A C48009B C48009C C48009D C48009E C48009F C48009G>

<C48009H C480091 C48009J C48010A C48011A C48012A C49020A
C49021A C49022A C49022B C49022C C49023A C49024A C49025A

2-8

IMPLEMETATION DEPENDENCIES

C49026A> <C4AO05A C4AO05B C4AO06A C4A007A C4AO10A C4AO10BC4AO10D C4AO11A C4Ao12A C4AO12B C4AO13A C4AO13B C4A014A><C51002A C51004A C52001A C52001B C52001C C52005A C52005BC52005C C52005D C52005E C52005F> <C52007A C52008A C52008B
C52009A C52009B C52010A C52011A C52011B C52012A C52012BC52013A> <C52103B C52103C C52103F C52103G C52103H C52103K
C52103L> <C52103m C52103P C52103Q C52103R C52103S C52103XC52104A C52104B C52104C C52104F> <C52104G C52104H C52104KC52104L C52104M C52104P C52104Q C52104R C52104X C52104Y>

<C53004B C53005A C53005B C53006A C53006B C53007A C53008A
C54A03A C54A04A C54AO6A C54A07A C54A11A C54A13A C54A13BC54A13C> <C54A13D C54A22A C54A23A C54A24A C54A24B C54A26A
C54A27A C54A41A C54A42A C54A42B C54A42C C54A42D C54A42EC54A42F C54A42G C55BO3A C55B04A C55BO5A C55B06A C55B06BC55B07A> <C55B08A C55BO9A C55B1OA C55B11A C55B11B C55B15AC55B16A C55CO1A C55CO2A C55C02B C55CO3A C55C03B C55DO1AC56002A C57002A C57003A C57004A C57004B C57004C C57005A><C58004A C58004B C58004C C58004D C58004F C58004G C58005AC58005B C58005H C58006A C58006B C59001B C59002A C59002B
C59002C> <C61008A C61009A C61010A C62002A C62003A C62003BC62004A C62006A C62009A C63004A C64002B> <C64004G C64005A
C64005B C64005C C64103A C64103B C64103C C64103D C64103EC64103F> <C64104A C64104B C64104C C64104D C64104E C64104FC64104G C64104H C64104I C64104J C64104K C64104L C64104MC64104N C641040 C64105A C64105B C64105C C64105D C64105EC64105F> <C64106A C64106B C64106C C64106D C64107A 764108AC64109A C64109B C64109C C64109D C64109E> <C64109F C64109GC64109H C64109I C64109J C64109K C64109L> <C64201B C64201CC64202A C65003A> <C65003B C65004A C66002A C66002C C66002DC66002E C66002F C66002G C67002A C67002B C67002C C67002DC67002E> <C67003A C67003B C67003C C67003D C67003E C67005AC67005B C67005C C67005D> <C72001B C72002A C73002A C73007AC74004A C74203A C74206A C74207B C74208A C74208B C74209A
C74210A C74211A C74211B C74302A C74302B C74305A C74305BC74306A C74307A> <C74401D C74401E C74401K C74401Q C74402A
C74402B C74406A C74407B C74409B> <C83007A C83012D C83022AC83023A C83024A C83025A> <C83027A C83027C C83028A C83029AC83030A> <C83031A C83031C C83031E C83032A C83033A C83051AC83BOZA C83B02B C83EOZA C83EO2B C83EO3A C83EO4A C83FO1AC83F03A C84002A C84005A C84008A C84009A C85004B C85005A
C85005B C85005C C85005D> <C85005E C85005F C85005G C85006A><C85006F C85006G> <C87AO5A C87A05B C87BO2A C87B02B C87B03AC87B04A C87B04B C87B04C C87B05A C87B06A C87B07A C87B07B><C87B07C C87BO7D C87B07E C87B08A C87B09A C87B09B C87B09CC87B1OA C87B11A C87B11B C87B13A C87B14A C87B14B C87B14C
C87B14D> <C87B15A C87B16A C87B17A C87B18A C87B18B C87B19AC87B23A C87B24A> <C87B24B C87B26B C87B27A C87B2BA C87B29A
C87B30A C87B31A C87B32A> <CB1001A CB1002A CB1003A CB1004ACB1005A CB1010A CB1010B CB1010C CB1010D> <CB2004A CB2005A
CB2006A CB2007A CB3003A CB3003B> <CB3004A CB4001A CB4002ACB4003A CB4004A CB4005A CB4006A CB4007A CB4008A CB4009ACB4013A CB5002A CB7003A CB7005A> <CC1004A CC1005C CCI010A>

<CC1010B CC1018A CC1104C CC1107B CC1111A CC1204A CC1207B
CC1220A CC1221A CC1221B CC1221C CC1221D> <CC1222A CC1224A

2-9

IMPLEATIMN DEPENDENCIES

CC1225A> <CC1304A CC1304B CC1305B CC1307A CC1307B CC1308ACC1310A> <CC1311A CC1311B CC2002A CC3004A CC3007A CC3011A
CC3011D CC3012A CC3015A CC3106B> <CC3120A CC3120B CC3121ACC3123A CC3123B CC3125A CC3125B CC3125C CC3125D> <CC3126A
CC3127A CC3128A CC3203A CC3207B CC320aA CC32088> <CC3208CCC3220A CC3221A CC3222A CC3223A CC3224A CC3225A> <CC3230A
CC3231A CC3232A CC3233A CC3234A CC3235A CC3236A CC3240A
CC3305A CC3305B CC3305C CC3305D CC3406A CC3406B CC3406C
CC3406D CC3407A CC3407B CC3407C CC3407D CC3407E CC3407F><CC3408A CC3408B CC3408C CC3408D CC3504A CC3504B CC3504CCC3504D CC3504E CC3504F> <CC3504G CC3504H CC35041 CC3504JCC3504K> <CC3601A CC3601C> <CC3603A CC3606A CC3606B CC3607B>

2-10

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Robert R. Risinger
TLD Systems, Ltd.
3625 Del Amo Boulevard, Suite 100
Torrance, CA 90503

Testing of this Ada implementation was conducted at the customer's site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test of
the customized test suite in accordance with the Ada Programming Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC [Pro92].

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of test
errors (item b; see section 2.1), those that require a floating-point
precision that exceeds the implementation's maximum precision (item e; see
section 2.2), and those that depend on the support of a file system - if none
is supported (item d). All tests passed, except those that are listed in
sections 2.1 and 2.2 (counted in items b and f, below).

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3461
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 65
d) Non-Processed I/O Tests 264
e) Non-Processed Floating-Point

Precision Tests 285

f) Total Number of Inapplicable Tests 614 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of tests
was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were loaded into the simulator on the host
computer system, and run. The results were captured on the host computer
system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of the
processing options for this implementation. It also indicates the default
options. The following options were used for testing this implementation:

Compiler
Option / Switch Effect

NoPhase Suppress displaying of phase times during
compilation.

NoLog To cause command line to be echoed on log
file.

NoDebug To suppress generation of debug symbols to

speed compilation and linking.

List To cause listing file to be generated.

Target-1750A Selects the TLD MIL-STD-1750A target
architecture.

3-2

PROCESSING INFORMATIOON

Linker
Option / Switch Effect

NoDebug Suppresses generation of Debugger symbol
files.

NoVersion Suppresses announcement banners that
contain timestamp and version information
to facilitate file comparing.

All tests were executed with Code Straightening, Global
Optimizations, and automatic Inlining options enabled. Where
optimizations are detected by the optimizer that represent deletion
of test code resulting from unreachable paths, deleteable
assignments, or relational tautologies or contradictions, such
optimizations are reflected by informational or warning diagnostics
in the compilation listings.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-3

APPENDIX A

MAKC= PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN-also listed here. These values are expressed here
as Ada string aggregates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value

$MAX IN LEN 120 - Value of V

$BIG IDI (l..V-l -> 'A', V -> '1')

$BIG ID2 (1..V-1 -> 'A', V-> '2')

$BIGID3 (l..V/2-> 'A'W) & '3' &(l..V-l-v/2 -> 'A')

$BIG ID4 (l..V/2-> 'A') & '4' &
(l..V-l-V/2-> 'A')

SBIG INT LIT (1..V-3 -> '0') & "298"

$BIGREALLIT (I..V-5 -> '0') & "690.0"

$BIG STRING1 '"' & (l..V/2 -> 'A') & "'

$BIGSTRING2 '"' & (l..V-1-V/2-> 'A') & '1' & '"'

SBLA NKS (1..V-20 -> '

$MAX_LEN_INTBASED_LITERAL
"2:" & (1..V-5-> '0') & "11:"

SMAX LEN REAL BASED LITERAL
"16:" & (l..V-7 -> '0') & "F.E:"

A-1

MACRO PARAMETERS

$MAX_STRINGLITERAL "" & (l..V-2 -> 'A') & "'

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACCSIZE 16 (48 for access to STRING)

$ALIGNMENT 4

$COUNT LAST 511

$DEFAULT_MEM_SIZE 65536

$DEFAULT__SlO_UNIT 16

$DEFAULT SYS-NAME AF1750

SDELTA DOC 2.0**(-31)

$ETRYADDRESS 15

$ENTRY ADDRESS1 17

$ENTRY ADDRESS2 19

$FIELD LAST 127

$FILETERMINATOR ASCII.FS

$FIXED NAME NO SUCH FIXED TYPE

$FLOAT NAME No SUCH _ MOAT TYPE

$FORM STRING

$FORM_STRING2 CANOT RESTRICTFILE CAPACITY

$GREATER THAN_ DRATIOCN
90000.0

$GREATER THAN DURATION BASE LAST
131073.0

$GREATER THAN FLOATBASE LAST
-- - 71000E+38

$GREATER THAN-FLOATSAFE LARGE
- 2713000E+37

A-2

MACRO PARAMETERS

$GREATER THAN SHORT FLOAT SAFE LARGE
NO-SUCH-SHORTFLOAT TYPE

SHIGHPRIORITY 64

$ILLEGALEXTERNAL FILE NAME
BAt)CHAR@. I

$ILLEGALEXTERNALFILE NAME2
"THISFILMV•LNDM 7.BEPREFECTLYLEGA-L" &
"IFIT1ERDLTSOM3G. SOTHERE"

$IN4APPROPRIATE LINE L120M
-1

$ INAPPROPRIATE PAGE LENGTH
-1

$INCLUDEPRAG(•A PRAGMA INCLUDE ("A28006D1 .TST")

$INCLUDEPAAW PRAGMA INCLUDE ("B28006DI.TST")

$INTEGER FIRST -32768

$INTEGER LAST 32767

$INTEGER LAST PLUS_1 32768

$INTERFACE LANUAGE ASSEMBLY

SLESSTHANDURATION -90000.0

$LESSTHANDURATION BASE FIRST
- -131073.0

$LINETERMINATOR ASCII.CR

$LOWPRIORITY 1

$MACHINqECODESTATEMENT
R_fliT' (OPCODE->LR,RA ->R0,RX->R2);

SMACHINE CODETYPE ACCUMUIATOR

$MANTISSA DOC 31

$MAX DIGITS 9

SMAX INT 2_147 483 647

SMAX INTPLUS_1 2_147 483 648

SMININT -2 147 483 648

A-3

MACRO PARAMETERS

$NAME NO SUCH INTEGER TYPE

$NAMELIST NONE, NS16000, VAX, AF1750, Z8002, Z8001,
GOULD, PDP11, M68000, PE3200, CAPS,
AMDAHL, 18086, 180286, 180386, Z80000,
NS32000, IBMS1, M68020, NEBULA, NAMEX, HP

SNAMESPECIFICATION1 Not supported

SNAMESPECIFICATION2 Not supported

SNAMESPECIFICATION3 Not supported

$NEG BASED INT 16#FFFFFFFE#

$NEWMEM_SIZE 65535

$NEW_STORUNIT 16

$SNEW _SYS NAME AF1750

$PAGETERMINATOR ASCII.CR & ASCII.FF

SRECORDDEFINITION Withdrawn

$RECORDNAME Withdrawn

$TASKSIZE 16

$TASKSTORAGE SIZE 2000

STICK 1.0/10_000.0

$VARIABLEADDRESS 16#8000#

$VARIABLE ADDRESSi 16#8020#

$VARIABLEADDRESS2 16#8040#

$YOURPRAGMA Withdrawn

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise,
references in this appendix are to compiler documentation and not to this
report.

B-1

TLD ADA COMPILER 1750A-ADA-ZB
COMPILER USAGE 3- 9

3.7 COMPILER OPTION SWITCHES

Compiler option switches prov do control over various processi.ng and
oupu.. features of the compiler. These features include several
varieties of listing output, the level and kinds of optimizato
desired, the choice of target computer, and the operation of the
compler in a syntax checking mode only.

Keywords are used for selecting various comiler options. The
complement keyword, if it exists. is used to disable a cmpiler option
and is formed by prefixing the switch keyword with "IO".

Switch names may be truncated to the least number of characters
required to uniquely identify the switch. For example, the switch
"CROSSREF" (explained in the list below) may be uniquely identified by
the abbreviation "CR" or any !oger abbreviation. In the list of
switches on the follow3ng pages, the abbreviations are in bold and the
optional extra characters are not bolded.

If an option is not specified by the user, a default setting is
assumed. All specified compiler options apply to a single invocation
of the coiler.

The default setting of a switch and its meanirng are defined in the
table below. The meaning of the complement form of a switch is
normally the negation of the switch. For sane switches, the colement
meaning is not obvious; these complement switch keywords are listed
separately.

In the description of the switches, the target dependent name target is
used. The value of this symbol is determined by the value of the
TARGET switch.

Compiler-generated file specifications generally conform to host
conventions. Thus, any generated filename is the source filename
appended with the default file type. The output file name can he
completely or partially specified.

"?%.a 3A4.U LTD -2

TLD ADA COMPILER 1750A-ADA-2B

COMPILER USAGE 3 - 10

SWITCH NAME MEANING

NOLMOD - default
3 2UAaR -- default
N0312ADDR

The 32BADR switch calls for address C0uZati=nL using 1-750A
double precision fixed point data words. When lSBADDR is selected,
Add ass co•Du:ations are perf ormed using single precision fixed
point data words ignoring the possibility of a 1750A Fixed Point
Overflow interrupt due to computation of an address greater than
7FVF hex.

ABsoL•- LIST=q
NOABsoLrL:STnG

This switch produces a ".LZX" file with a list of control sections
and imports and control section and import numbers with references
to the macro listing file (i.e., the line number and calurm number
where a relocatable address appears in the macro listing). This
file along with a compiler-generated source listing file and a
linker-generated ".M=11 file (containing the absolute addresses of
theme control sections and imports) are used by the TLD Absolute
Listing Utility to produce a macro listing ,.ASS" file con tainng
absolute rather than relative addresses. Rater to the Coiler
LIST and MACRO switches, to the Reference Document for the TLD
Linker for the ABSOLU LIST1G switch that produces the ".miia
file, and to the Reference pocument for the TLD ?=L-STD-1750A
U for further info-mation regarding the macro listing
containing absolute addresses rather than relative addresses which
are normally created by the Compiler MACRO and LIST switches.
(Also, the ABSOLUTELISTIN , MACRO, and LIST switches may be
specified for assembly language code in the assembly to produce the
same files as created by the Compiler to produce the absolute macro
listing. Refer to the Reference Document for the ., Macro
aa2MbzX for further information.)

The MNZRO and LIST switches must be specified with this switch.

TLC M970WI LMB- 3

TLD ADA COMPILER 1750A-ADA-ZB
COMPILER USAGE 3 - 11

CALL Tr
NOCJEL-Tj default

This switch is used in conjunction with ELABOTOR and LIST to
cause all CTZ files (corresp=oding to the comlete set of object

files being linked for this program) to be read in and a closure of

all calls in the program to be computed. The results of this
analysis is formatted into a subprogram call tree report and output
in the listing file. This switch has no effect without the

S.ABORATOR and LIST switches.

NOTE: The call tree is incoplete if any required compilation
unitos .CT files are missing.

CHzcxs -- default
CHECKS(-(cJeckiidantcfier(.... })
NOCHEcxS {. ((heck- -dentifier(... }.)))

When the O-CKS switch is used, zero or more cJecki de .ifiers are
specified aid the run time checks are enabled. The status of run
time checks associated with unmentioned cbeck identifici-rs is
unchanged.

Without any cbeck identzfiers, the NOCHECKS switch m=its all run
time checks. 1f one or more check idantifiers are specified, the
specified run time checks are omitted. The status of run time
checks associated with unmentioned cbeck identiflers is unchanged.

Checks can be eliminated selectively or coletely by source
statement pragma Suppress. Pragma Suppress overrides the CHECKS
switch.

Chec*kidencifiers axe listed below and are described in the LMI,
Section 11.7.

ALL CHECKS -- default (consists of all the checks below)

ACCESSCHECK Disc • CHECK DISIONCHECK
EAB0ONATON CHECK ZDEXCHZCX LENGT=- CK
OVERFLOW CK RAPIGECMCX STOPRGECHECK

CONrzauRAON. configuzrea t. -ide-rLifier
NOCONFzGUATIoNc-c=f. gura tr.in- i±dec:.fier

This switch provides a conditional cempilatio= (configuration)
capability by determ.inug whether or not source line(s) marked with
a special cement. are compiled. if the CONFIGUATION switch iS
used, the specially cemented source line(s) are included in the
cop~ilation. :-f neicher of these switches or the NOCONFIGURATION
switmh Ls used, the specially commented source linets) are treated
as regular Ada comments and are ignored.

.0 •WA L70 B-4

TLD ADA COMPILER 1750A-ADA-2B
COMPILER USAGE 3 - 12

Conditional source lines can be specially commened in one of two
ways: 1) by begqnning all conditional source lines with
-- /configurar.ion-identifier or 2) by placing
-- { configuracion-identifier on a line by itself, plac=ng
conditional source on the following lines, and by placing
-- j}configuacon=-i.dentifier on a line by itself after the last
conditional source line. See the examples below:

For a single line:

- - / configuration- identifier condi i.±on-I -source- line

Or:

- - {con•figurac=-idenrAif.er
conditi oal -source - line
- - } co~f.gurarin - identifier

For multiple lines:

S- /cnfigura c ion -iden ifier condi tional -source - line -2
-- cfi gura in - identifier cocd Iionazl- source- line -2
-co -onfiguration- identifier condi t~i cal -source - line -3

- co=f I gura tii on-idencifir- condi t~ional -source - line -n

or:

- - { ccnfigura tion - identifier
condi tional - source - line - I
codi ti cnal -source line - 2
condi tional - source . line -3

condi tional -source- line n
- - } c nfigura cio. = .den-Ifer

The condi -i Oal - source-line(s) beginning with - - / or between - - {

and -- } are cp.iled only if CONFIGURATZON.
configuracIon-idenz-felr is specified.

The spec--al cUCment characters -- / or --f and -- } must be entered
as shown; .no spaces are allowed between the dashes and the slash or
between =he dashes and a brace.

77-. Wm'rYWm, LT' B-5

TLD ADA COMPILER 1750A-ADA-2B
COMPILER USAGE 3 - 13

Also, the configursa-on-.i.denifier must immediately follow the
special comment characters; no space is allowed between the special
ccment characters and the coniguracion -iden,'fler.

NOTE: Any conditional source placed on the same line as the
-- {€cong-ation-identifier and/or the - - }

confguration-idenrifler, will be considered conditional source
and will be included in or excluded fr the ccePilatio as
dete-mined by this switch setting, however, the previously
described format is preferred.

Namina Constraint

By default, a /CONFIG=1750A setting is created for the target
couputer and model (by the /TARGET and the /MODEL Ccmpiler
switches) . Therefore, 1750A is not a valid
configuracion-identifier for conditional coMilation. if used,
conditional source with that name will always be included in the
compilation whether or not this switch is specified (since that
name is already specified for the target and model, by default).

Nesting

Conditional source lines may be nested, but must be properly
nested; a conditional c=Vilation (configuration) must be
completely nested within another as shown below:

For braces nested within braces:

-- tA
condi tio•zal - source - line -Az
condi tional - source - line -A2-- is
condi ti hoal - source -line -BI

condi ti anal - source- line -A 3

If CONFTG-RATIONnA is used, candiio•ol-source-Al, -A2, and -A3
will be included. :f CONFIGURATIONaS is used,
condirlonal-source.-z through -Sn will be included. If
CONFIGCRATTON-AB is used, condicional-source-Al, -A2, -A3 and -31
through -Bn will be included.

7%.= AF 0 L=: B-6

TLD ADA COMPILER 1750A-ADA-2B
COMPILER USAGE 3 - 14

The following example format is also valid:

--(A
-{c
-- {D

.--}

..)a
-- }A

However. the following example format is invalid, since "S" is not

coletely nested within "A":

-- •A
-- {B

and two warning messages will appear: ,Unmatched configuration

swivtch will appear for the secod "A" and *Missing configuration

switch" will appear for the second ISO.

For slashes nested within braces:

-- (A

c=di t.inal - source-line -Al
c- d/ tioanl - source - line -Ai2

-- /C condi:onal. -source-line-C
- -/D condit:omal -source-line-D
condi tional - source - line -A3

If CONFIGMRATIONsA is used, conirional-source-Al, -A2, and -A3

will be included. If CONFlZGMATZON=-B is used, condtiomal-source-B
will be included. If CONFIGURATONA3D is used,
cocuditional-source-Al, -A2, -A3, -B, and -0 will be included.

-- 7WA .,L= B-7

TLD ADA COMPILER 1750A-ADA- B
COMPILER USAGE 3 - 15

CRossREF
NOCRossmF -- defauit

This switch generates a cross reference listing hbat contains names
referenced in the source code. The cross reference listing is
included in the listing file; therefore, the = switch ust be
selected or COSSREF has no effect.

CSEG -- default
NOCSEG

This switch indicates that constants and data are to be allocated
in different control sections.

CTi
NOCTi -- default

T'his switch generates a CASE tools interface file. The default
filename is derived f-on the object filename, with a .CT
extension. The . CTI file is required to support the
STACK-ANALYSIS. CALL-TREE. FULLCAL.LTREE, and :hVERTEDCALLTREE
switches.

DEB=o -- default
NODEBuG

This switch selects the production of symbolic debug tables in the
relocatable object file.

Alternate abbreviation: DBG, NODBG

DIA=oSrCS
NODIAosTcs -- default

This switch produces a diagnostic message file coupatible with
Digital' s Language Sensitive Editor and XinoTech Editor. See
Digital's documentation for the Language Sensitive Editor for a
detailed explanation of the file produced by this switch.

DOCMWTATON-cad cumenmaro=n- filename
NOD0 commwo -- default

This switch causes information collected during c=Vilation to be
saved in a specified data base file or a default file named
17SOA.DOC -n the complation directory. This information includes
the compilation units. the contained scopes, the local declarations
of objects and types and their descriptions. exteral references,
callers, calls, program design language (PDL) which in extracted
from stylized Ada cocnents embedded in the source code, and any
other information extracted frtm similar stylized Ada comments.
The T=D Ada Iano Display (TLDaid) permits the user to browse this

7"fD 7rWWu L70 B-8

TLD ADA COMPILER 1750A-ADA-ZB
COMPILER USAGE 3 - 16

data bass and to extract selected data base information to support
the understanding of a program or to produce documentation
describing the program.

NOTE: Although the TLDaid utility is not yet available, users may
want to beg=n creating documantation data base (s) by using this
switch when performi1ng compilations. When TLDa3d becoms
available, it may then be used on already existing data base(s)
without having to generate them thzougj recompilation.

E.ABORATOR
NOEL oR.&.R -- default

This switch generates a setup program (in unit-nameSELAB.OBJ (and a
listing file in unzir-nameSELAB.LZS if the LIST switch was
specified)) that elaborates all compilation units on which the
specified library unit procedure (main program) depends and then
calls the procedure (main program) . When the ELABORATOR switch is
used, The unit name of a previously coiled procedure must be
specified instead of a source file. :t is not necessary to
distinguish a main program from a library unit when it is compiled.

EXcEPTIO:N Flo
NOEXcEPTiON iNFo -- default

This switch generates a string in the relocatable object code that
is the full pathname of the file being comiled and generates the
extra instructions required to identify the Ada source location at
which an unhandled exception occurred. The NOMECEPTIONINFO switch
suppresses the generation of the string and the extra
instruct-ons. At run time, when an unhandled exception occurs. the
source file and Ada source location information, if collected by
the EXCEPTIONINFO switch, is displayed in an error message.

NOT : Because the Symbolic Debugger does not use information
generated by EXCEPTION _NFO and it increases program size, this
switch should not be used ordinarily. The EXCEPTONINFO switch
should be used only if you need to locate the unhanndled exception
when the source is not running under the debugger.

NOF~F= CAL T--RKE - - default

When the PULLCALLTREE switch is used, the -ompiler listing
includes all calls including all nested calls in every call. Tbe
NOFULLCALT--.REE svwich shows all nested calls -n the first
instance only and all subsequent calls are referred to the first
instance. This switch has no effect without the ELABORATOR and
LIST switches.

W73h~ LTDB-9

TLD ADA COMPILER 1750A-ADA-2B
COMPILER USAGE 3 - 17

INDE~rx'zo.n
INDCE rse.3 -- default

This switch controls the ind-ntation width in a ref ormatted source
listing (see the REFORHAT switch description) . This switch assigns
a value to the number of colum used in indentation; the value n
can range f r= 1 to 8.

INDIuc E zj
NOINDIzRERCTLzd -- default

If the 12WIRECTC.LS switch is used, all subprograms declared in
the compilation are called with indirect calls. This allows the
user to replace a subprogram body at execution time by changing the
pointer to the subprogram in the indirect call vector.

INFo -- default
NOINFo

The Iio switch produces all diagnostic messages including
information-level diagnostic messages. The NOINFO switch
suppresses the production of information-level diagnostic messages
only.

INTSL
NOINTsL -. defaul t

This switch intersperses lines of source code with the assembly
code generated in the macro listing. This switch is valid only if
the LIST and MAZRO switches are selected. It may be helpful in
correlating Ada source to generated code, but it increases the size
of rhe listing file.

INVE= cAL .. "zs
NOINVERimi CALL TREE - - default

This switch determines which calls led to the present one. A
reversed order call tree is generated. This switch has no effect
without the ELABORATOR and LIST switches.

LISTI .1Li=ng- fIle- pec)
NOLIST -- default in interactive mode
LIST -- default for background processes

This switr-h generates a listing file. The default filename is
derived from the source £ilename, with a .LIS extension. The
1isc,.mg-t.fe-spec can be optionally specified.

77-0 ,,, W LTD B-lO

TLD ADA COMPILER 1750A-ADA-2B
COMPZLER USAGE 3 - IS

LOG
NOLOG -- default

This switch causes the ccspiler to write in the ccmpilatiom log,
cand line options and the file specification of the Ada source
file being compiled which is written to to SYS$SOVT7T (the
operating system's standard output). This switch is useful inexam~.n ng batch output logs because it allows the user to easily
detemi.,e which files are being compiled.

MACao
NOMACac -_ defaul

This sv2.tch produces an assembly like object code listing appended
to the source listu.ng file. The LIST switch must be enabled or
tJhis switch has no effect.

MAIN su
NOMATN ELzA -- default

This switch makes the compiler treat the compilation un.t being
comiled as a user-defined elaborat•on or setup program which is
used instead of that normally produced by the ELABORATOR switch.
The source file must be specified instead of a unit name of a
previously co:piled procedure. Usually, the source file is
modified by the user, starting from the version produced by the
WRITEELAB switch.

MAXERRoas.n
MXERRORS-500 -- default

This switch assigns a value limit to the number of errors forcing
job term.nation. Once this value is exceeded, the compilation is
termi-ted. :nformation-level diagnostic messages are not included
in the count of errors forcing termination. The specified value's
range is from 0 to 500.

f, Vru4. L-= B-11

TLD ADA COMPILER 1750A-ADA-ZB
COMPILER USAGE 3 - 19

MODELmaweJ -aame

where model-name is one of the following:

MODLsummi- default
Prov•des compilation capabilities that are

-- ca to all models of the target.

MODEL0.no Gvsc -- MC target
MODEL.MWELLGVSC - Honeywell GVSC target
MODL.WELLzGVSCFFPP Honey 11GVSC target (with

floating point processor)
MODEL.RWELL ECA -- Rockwell Embedded Compiler architecture
MODEL.R.z750A -- Rockwell International 1750A architecture
MODEL R1I750AB - Rockwell International 175OA/B architecture
MODEL-BM-417SO -- Marconi 31750 architecture
MODEL.PACE 17750o -- PACE 1750AE architecture
MODEL- s - 07SOB: -- MIL-STD-1750B, Type I1
MODEL0gs 1750- - MzL-STD-17SaB. Type III
MODEL.HiDc283 - Marconi MD=81

By default. the compiler produces code for the generic or standard
target. The model switch allows the user to specify a =onstandard
model for the target; the possible models are indicated in the
list, above.

For example, the bMC281 switch selects the MDC281 (MS 281)
implementation of MZL-STD-1750A.

NEW LIBRAY i
NONEW_- ay -- default

The NEW LIBRARY switch creates a 1750A subdirectory in your current
working directory and a 175OA.LZB library in that subdirectory,
replacing the contents of the prior subdirectory and library, if
they existed.

The NONEWL:BRARY switch checks if a 1750A subdirectory exists in
your current working directory and if it does not already exist. it
will create the 1750A subdirectory and a 1750A.LXB library in that
subdirectory.

NOTE: Tis switch along with the PAR=T LXBRARY switch replaces
the MWKLIB swvtch.

1 7 7. 7 %NLT'R40 -X B-12"BMW

TLD ADA COMPILER 1750A-ADA-2B
COMPZLER USAGE 3 - 20

O&-CT (.obaec: -fi.le- spec)
OBJECT - - defau.t
NOOwzN,-

s switch produces a relocats•ble object file in the 1750A

subdirectory in the current cpilation directory. The default
filename is derived fro the source filename, with a ".OBJ'.
extension.

OPT -- default
OPTV a(parameter(...}))
NOOPT
NOOPT(- (parameter{, ...) }

This switch enables the specified global optimization of the
compiled code. The negation of this switch disables the specified
global optmization of the ccomiled code. Certain parameters may
be turned on or off as listed below.

When the OPT switch is entered, without any parameters, all
optimizations listed below are turned on except for those which
cannot be turned on. When it is entered with parameters, only the
specified parameters are turned on. if they can be turned on. This
restores the parameters to their defaults.

When the NOOPT switch is entered, without any parameters, all
optimizations listed below are turned off except for those which
cannot be turned off. When it is entered with parameters, only the
specified parameters are turned off, if they can be turned off.

Default optimizations should noa be changed for normal use. Users
may wish to change these optimizations for configuration or testing
purposes. however, TLD Systems recends that they not be
changed. These default optimizations should be changed only when
there is an abnormal situation with data or the program or a bad,
TLD- or user-created algorithm. For example, if the program has an
u=used procedure the default optimization parameter DEAD-SUBPROGRAM
default will delete it for production improvement, however. the
user may =ot want the unused procedure deleted for Debugger
purposes. It users are finding a need to change these
optimizations, please notify TLD Systems so that we can resolve the
problem more efficiently.

TLC M0w0 & L= B-13

TLD ADA COMPILER 1750A-ADA-ZB
COMPILER USAGE 3 - 21

The followiha parameters may be used with the /OPT and /NOOwr

CODE_Mo,,•vm

This parameter moves code to improve execution time. (For
axmele, moves invariant code out of a loop). This parameter
in turned on by default and can be turned off or on.

CODESn• n-u.-.,.

This parameter ensures that program flow is well formed by
performing rearrangement of segments of coda. This parameter
is turned on by default and can be turned off or on.

COMNSTMEXPRESS ION

Expressions wi.th the same operands are not computed a second
time. (For example, if an expression uses "A + B" and another
expressions uses "A + B", the Compiler does not compute the
second expression, since it knows it has already computed the
value) . This parameter is turned on by default and cannot be
turned off.

CONs rA=RI-maTbc

This parameter performs constant arithmetic. This parameter
is turned on by default and cannot be turned of f.

DEADCoDE

This parameter removes code that cannot be reached such as
unlabeled code following an unconditional branch. This
parameter is turned on by default and cannot be turned off.

DEADSumpioG

This parameter removes subprograms that are not referenced.
This parameter is turned on by default and can be turned off
or On.
DEADVAR

This parameter removes local temporary variables that are not
used during execution. This parameter is turned on by default
and can be turned off or on.

m 77.0 Atw'rr L=T'• B-14

TLD ADA COMPILER 1750A-ADA-2B
COMPILER USAGE 3 - 22

DEL sIGN

This parameter optimizes code by delet.ing redundant
asignments. It only performs deletions allowed by the
semantics of Ada. This parameter is turned on by default and
can be turned off or on.

By default. the compiler automatically inlines subprograms
that are not visible in a package spec and if the estimated
code size is smaller than the actual call, it will inline it.
This parameter is turned on by default and can be turned off
or on.

LITrz._POOL

This parameter overrides the Compiler' S optimization
separation of compile time constants into a separate memory
pool. This parameter enables the user to exercise complete
control over data allocation. This parameter is turned on by
default and can be turned off or on.

LOoP ticLLo m

This parameter applies to register memory only. It causes an
expression computed at the end of a loop to be remembered at
the top of the next iteration. This parameter is turned on by
default and can be turned off or on.

This parameter performs optimization in very limited
contexts. This parameter is turned on by default and cannot
be turned off.

RzGZSTLRDED =CI0N

This parameter allows dedication of a register to an object or
expression value. This parameter is turned on by default and
cannot be turned off.

SIN=LE CD!LE

This parameter creates one object module per compilation unit
rather than one for each top- level subprogram. If Chis
parameter is not used, and the compilation unit spec and body
are in separate files, the extension " ba is added to the
package name n the object file name of the package body
(i.e., package-name-b. €b) to differentiate between the

7%. r nA 1 &X0r L,-'•B-15

TLD ADA COMPILER 1750A-ADA-2B
COMPILER USAGE 3 - Z3

package body and spec. The user may locate csectus from only
the body or spec by specifying the unique object filname (
package-nameb for the body or package-name for the spec)
followed by the control section name. This parameter is
turned off by default and cannot be turned on.

ST~rmtzmcaoN

This parameter selects operators that execute faster. This
parameter is turned on by default and cannot be turned off.

Substitutions of operands known to have the same value are
performed before expression analysis optimization. (For
examle, if B and C have the same value, the expression "A +
C" is used and "A +- B" will be recognized as c -on and the
Cozpiler will not ccpute the second expression, since it
knows it has the same value as the first). This parameter is
turned on by default and cannot be turned off.

PAGEn
PAGr.ur - - default

This switch assigns a value to the number of lines per page for
listing. The value can range from 10 to 99.

PAREzrr LZERARY.parenc - ibrary- spec
NOPARE•.L.zP3ARY --- default

The PARMZTLRARY switch uses the specified library as the parent
library for the library to be created. 17SOA must be included at
the end of the parnc-librazy.-spec. This switch may only be used
with the NEWLEBRARY switch.

If the NOPARENT LIBRARY switch is used, the library created by the
NEW LBRARY switch will have no parent librarxy.

NOTE: This switch along with the NEWLI3R=Y switch replaces the
HUMELIB switch.

PARMs
NOPARMs -. default

This PARAXTR switch causes all option switches governing the
cocpilation, =ncludcing the defaulted option switches, to be
included =n the listing file. The LIST option switch must also be
selected or this switch has no effect. User specified switches are
preceded i.n the listing file by a leading asterisk (). This
switch adds approximately one page to the listing file.

7"La sFA71A ~T &.7W B- 16

TLD ADA COMPILER 1750A-ADA-2B
COMPILER USAGE 3 - 24

PHASE - - default
NOPHAss

This mvitch suppresses the display of phase name during
ccpilation. This switch is useful in batch jobs because it
reduces the verbosity of the batch log file.

REF ID cAss.aptiou
NOREFiLcAsz.option -- default

This is a reformatting option, under the control of the REFOWtT
switch. This switch determines how variable names appear in the
compiler listing. The opzi•ons for this svitch are:

ALLLOWER -- All variable names are in lower case.
ALL• U1ERLID - All variable names are underlined.
ALLUPPER - All variable names are in upper case.
AS IS -- All variable names appear as is.
InITTLCAPS - - All variable names have initial caps. -- default
INISERTUMDERSCORE -- All variable names have underscores.

REF KEY cAsz.qopL=
NOREF-i-cAssmopr-ion - defauit

This is a reformatting option, under the control of the REFORMAT
sw:tch. This switch determines how Ada key words appear in the
copiler listing. The options for this switch are:

ALL_.LOWER - All Ada key words are in lower case. -- default
ALL UIWERLNED -* All Ad& key words are underlined.
ALL UPPER -- All Ada key words are in upper case.
AS IS -- All Ada key words appear as is.
Zh1TZAL CAPS - All Ada key words have initial caps.
INSERT U3DERSCORE - All Ada key words have underscores.

REFO0mT{ (refoxmat -file-spec)
NOREFOmmT -- default

This switch causes the compiler to reformat the source listing in
the listing file (if no refozxmc-file-apec was provided) or
generate a reformatted source file, if a reformac-file-upec is
present. The default file extension of the reformatted source file
is ".RFMI. Reformatting consists of uniform indentation and retains
numeric literals in their original source form. This switch
performs :he reformattn•g as specified by the REF_:D_CASE,
REFKEY CASE. and INDENTATION switches.

TL=0""MT-l L=• B-17

TLD ADA COMPILER 175OA-ADA-2B
COMPILER USAGE 3 -2.5

SOGRc- - default
NOSOcmcE

This swutch causes the input source program to be included in the
listing file. Unless they are suppressed, diagnostic messages are
always included in the listing f ile.

STACK ANALYszs
NOSTACKA•yszs -- default

This switch is used with the ELABORATOR and LIST switches to read
in .CT= files (corresponding to the complete met of object files
being linked for the program). The subprogram call tree is
analyzed to ccopute stack requirements for the main program and
each dependent task and writes the stack requirements to the .LZS
file. Without the ELABORATOR switch, at ccopile time, it records
the call information 'and stack information for each subprogram and
for any task, the task is allocated with an undefined storage
size. The storage size is defined by either the STACK DIRECTIS
switch or default value at link time.

NOTES: The tree is incomplete if any required compilation unit's
.CTZ files are missing.

Recursion cannot be accounted for because this is a static
analysis.

STACK Dmz=C'.Vzs
NOSTACK_Dx.ncr--vEs -- default

This switch determines the amount of stack space that must be
allocated for a task, based on the stack size previously calculated
by STACK_ANALYSIS. (Stack must be used in conjunction with the
STACK-ANALYSIS switch).

STATIC N=
NOSTATICIz= -- default

For statically allocated objects that are initialized with constant
values., the STATICZNXT switch causes the memozy location of
statically allocated objects to be loaded with their constant
values at load time instead of generating the instructions to store
the constant values at execution time.

NOTE: The XTRA switch is required when using the STATIC_1Z1T
switch.

7-.D A%0rrdVAZ L= B-18

TLD ADA COMPILER 1750A-ADA-2B
COMPILER USAGE 3 - Z6

SYNmz omy
NOSYNi'bozLy - de•auit

This switch performs syntax and semantic checking the source
program. No object file is produced and the MA= switch is
ignored. The Ada Program Library is not updated.

TAR=T.175OA -- default

This switch selects the target cmputer for which code is to be
generated for this ccmp.latio=. "17SOA" selects the ML-STD-1750A
Instruction Set Architecture.

WAmqnms - - default
NOWAurnqfs

The WARNINQS switch outputs warning and higher level diagnostic
massages.

The NOWARNewtS switch suppresses the output of both warning-level
and information-level diagnoutic messages.

WIDTH-.I0 -- default

This switch sets the number of characters per line (80 to 132) in
the listing file.

WRITE mu
NOWRi=i ELAB - - default

The WRITEELAB switch generates an Ada source file which
represents the main elaboration *setup* program created by the
compiler. The unit name of a previously compiled procedure must
be specified instead of a source file. The WRITE ELAB switch may
not be used at the same time as the ELABORATOR switch.

XTRA
NOXTRA -- default

This switch is used to access features under development or with
the STATICINIT switch. See the description of this switch in
Section 3.12.

•m r. TUMWT' L=r B-19

CCMPIJATICN SYSTEM OPTICNS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise, references
in this appendix are to linker documentation and not to this report.

B-20

TLD EXTENDED MEMORY LINKER 1750A-LNK-3F
HOST DEPENDENCZES 5- 3

5.1.1 STRING SUBSTITUTION

Sir.ng substituti.on allows the user to specify strings on the command
line which -are substituted for formal parameters in the directive file.
This capability allows the user to create model directive files which
are tailored by string substitution at each execution of TLDlnk.

A formal parameter in the direct.ve file is a name or number surrounded
by braces ({ }). The strings on the command line are indicated by the
switch STRINGS and/or by the switch PROGRAM . (See Section 5.1.2 for the
STRING and PROGRAM switches and Sections 5.2.2 and 5.3.2 for examples of
string replacement.)

5. 1. 2 SWITCHES

T.he switch-list consists of an optional series of switches.

The switch format consists of a prefix of "/" for VAX hosted systems or
..- " for = hosted systems followed by an identifying key word and an
optional value or list of values. This sect:on provides descriptions of
the switch key words.

TLD mfta"f -= B-21

TLD EXTENDED MEMORY LINKER 1750A-LNK-3F

HOST DEPENDENCIES 5- 4

SWITCH NAME MEANING

A3SOLUTELZSTZ2G
NOABSOL=TZLISTNqG

This switch produces a .mix file containing the absolute
addresses of control sections and impor•r. This file along
with a compiler-generated or assembler-generated lix file
(containing a list of control sections and imports and control
section and import numbers with references to the macro
list2.ng file) and source listing file, .1st on U= hosted
systems or .lis on VAX hosted systems, are used by the TLD
Absolute Listing Utiliy to produce a macro listing .abs file
containing absolute rather than relative addresses. Refer to
the Reference Document !or the =-L Ada Comoiler or the
Reference Document for the =.Q Macro Assembler for the
ABSOLUTE_ L:STING switch that produces the . lix file and MACRO
and LIST switches that produce the .1st or .lis file and to
the Reference Document for the T--D MIL-STD-17SOA Utilities for
further i-nformation regarding the macro listing containing
absolute addresses rather than relative addAesses which are
normally created by the TLD Ada Compiler or TLD Macro
Assembler MACRO and LIST switches.

ALOCH"F
NOAWOC2

The ALOC2AP switch, if used, must be used in combination with
the MAP switch to produce a map file. The contents of the map
file depends on the other map file switches used in
combination with this switch and the MAP switch. By default ,
this switch will produce a map file consisting of: 1) a list
of input switches and directives, 2) an allocation map
(containing nodes, modules, control sections, and external
symbols), and 3) an alphabetical symbols listing (containing
external symbols sorted in alphabetical order). The name of
the map file is derived according to the process explained in
the MAP switch description (below).

The NOALOCMAP switch, will not produce an allocation map
listing in the map file.

The other map file switches are: SYMRMkP, NOSYMBAP, NODEIMA,
NONODEMAP, M=DWP. and NOMOD2W.

ASun

This swit••. specifies the number of address states to be used
by the program being linked.

a = N MB-22

TLD EXTENDED MEMORY LINKER 1750A-LNK-3F
HOST DEPENDENCZES 5 - 5

This switch has the same functionality as the linker directive

ADDRESS STATES described in Chapter 4.

DEfUG (afileospec}

When DEBUG is used the linker creates a debug file containing
symbols and their values for the symbolic debugger and a
traceback file containing call and branching information. If
DEBUG is not specified, the linker does not produce the debug

file and traceback file. The linker puts symbols which were
included in the relocatable object file in the debug file and
traceback information also in the relocatable object file in
the traceback file. If no file-spec is specified, the name of
the debug file and traceback file is derived according to the
process described in the MAP switch description (below), but
by default, they will have .dbg and .trb file name extensions,
respectively. The format of the debug and traceback files is
described in Appendix A.

This switch has the same functionality as r-he linker directive
DEBUG described in Chapter 4.

When DEBUG is used, 7W symbol files (.dbg and .trb) are
generated if LDHIYPE - LDH or LLM is specified. The HP linker
symbol file (.1) and an assembler symbol file '.a) are
produced whenever LDWMTE*HP is specified.

DIRECT•VE (-fiae- spec}

The DIRECTV'.E switch lots TLDInk know that a directive file
provides linker directives in addition to those provided on
the command line. The command line switches override those in
the directive file in case of conflicting directives. :f no
file-spec is supplied, the directive file is named
<ciputfile spec>.lnk. If the DIRECT,•VE switch is not
supplied, there is no directive file. The directive file name
must be specified if no input-file-spec is provided on the
command line.

MITRY (af i e-spec}

When ENTRY is used, the entry module file is produced. 'f no
file-spec is specified, the name of the entry module file is
derived according to the process explained in the MAP switch
description (below) . The default file extension of t-he entry
module file -s ent. if no ENTRY switch .s supplied, the
entry module file is not produced.

.-hIe ENTRY .ODULE directive, described -n Chapter 4, may be
used in the directive file to restric: the entry points th•t
are defined in the entry module file.

WWWdý n ,v B-23

TLD EXTENDED MEMORY LINKER 1750A-LNK-3F
HOST DEPENDENCIES 5 - 6

ERROR
1OERROR

This switch lists or suppresses error messages. NOERROY
suppresses errors, warnings, and information messages.

hNFORMATION
NOZNFOPATION

This switch lists or suppresses informational messages.
NO=FORMATION suppresses only information messages.

LDM{ ufile- spec)
NOLDM

T'he load module file is produced by default, unless the switch
NOLDX Is explicitly provided. Therefore, this switch is
normally used with a file-spec from which the name of the load
module file is to be derived. If no file extension is
provided, .ldm is used. If the file-spec is not provided, the
name of the load module file is derived according to the
process explained in the MAY switch description (below).

LDmTYPEmfozmart(forma t... }
LDXTYPEMLDH-- default
LDMrE-LLA
LDHTYPE=HP

LDKTPE specifies the format of the load module and symbol
file(s) T=Dlnk is to produce. Three formats are currently
available. Only one format may be specified for a link. See
DEBUG for related information.

" LDM (file extension .l m), the default, specifie&ýýhe TLD
load module format.

" LL (file extension .llm) specifies a format that is
similar to the TLD load module format, but with logical
addresses instead of physical addresses.

" HP (file extension .x) specifies the Hewlett-Packard
HP64000 absolute file format.

-his switch has the same funct.onality as the linker dcirective
LDMTYPE described in Chapter 4.

•LD Wrfifl.m LmMm B-24

TLD EXTENDED MEMORY LINKER 1750A-LNK-3F
HOST DEPENDENCZES 5 - 7

On u hosted systems:

letusymbolusymbol{(...)

On VAX hosted systems:

LET-(symbol-.ymbol,(....))

This svwich causes the given symbols to be defined.

This switch has the same functionality as the linker directive
LET described in Chapter 4.

MAP (.file- spec}

This switch controls the generation of a map (listing) file.
If this switch is not specified, the linker does not produce a
map file. The contents of the map file depends on the other
map file switches used in combination with this switch. By
default, this switch will produce a map file consisting of: !)
a list of input switches and directives, 2) an allocation map
(containing nodes, modules, control sections. and external
symbols), and 3) an alphabetical symbols listing (containing
external symbols sorted in alphabetical order). If a full
file-spec is provided, then that is the file specification for
the map file. If a file-spec with no file extension is
provided, then TLDlnk uses the default file extension of
.map. If the file-spec is not provided, the file name for the

map file is derived from: 1) the name of the first object file
on the c-and line, or 2) the name of the directive file if
no ob•ect file is provided on the command line.

The other map file switches are: ALOOMP, N1=0AWP, SYHMBAP,
NOSYMBMAP, NODEMAP, NONODEMP, •OD•P, and NOPDbMP.

MAXADR.address

This switch sets the maximum physical address to be used by
the program being linked. If the M=ADR switch is not
provided, TDlnk uses a maximum address of FFFF.

This switch has the same functionality as the linker directive
MA X=R described in Chapter 4.

MDEL-model - cype

Thmis switch indicates whether the processor uses non-standard
ROM where the startup ROM enable bit is used as a pseudo
address state. The argment model.-ype i-s standard or
sur as. The default ;s standard. The sur as argument is used
for non-standard ROM.

B-25

TLD EXTENDED MEMORY LINKER 1750A-LNK-3F
HOST DEPENDENCZES 5- 8

NCNOMIW

The =MP switch, if used, must be used in combination with

the MAP switch to produce a map file. The contents of the map
f ile depends on the other map file switches used in
comnb.nation with this switch and the MAP sw9tch. By default,
this switch will produce a map file consisting of: 1) a list
of input sw2tches and directives, 2) an allocation map
(containing nodes, modules, control sections, and external

symbols), 3) an alphabetical symbols Listing (conta ning
external symbols sorted in alphabetical order), and 4) an
alphabetical modules listing (containing modules sorted in
alphabetical order). The name of the map file is derived
according to the process explained in the MAP switch
description (above).

The NMODbWP switch. will not produce an alphabetical modules
list2ng in the map file.

The other map file switches are: ALOCOP, NOALOCWP, NODEMAP,
NONODEBP, SYMBMP, and NOSYM•P.

WODE{ uname}

This swvitch names the first node of the link. If this switch
is not included, TLD~nk names the first node ROOT.

The linker NODE directive, described in Chapter 4, may be used
to group modules or selected control sections from modules.

NODMWP
NO1IODEgAP

The NDEMAP switch, if used, must be used in combination with
the MAP swi.tch to produce a map file. The contents of the map
file depends on the other map file switches used in
cbination with this switch and the MAP switch. By default.
this switch will produce a map file consisting of: 1) a list
of input switches and directives, 2) a node structure listing
(containing the address state of each node), 3) an allocation
map (containing nodes, modules, control sections, and external
symbols), and 4) an alphabetical symbols listing (containing
external symbols sorted in alphabetical order). The name of
the map file is derived according to the process explained in
the MAP switch description (above).

•... ,, sw''" B-26

TLD EXTENDED MEMORY LINKER 1750A-LNK-3F
HOST DEPENDENCIES 5 - 9

The NONODEIMP switch. will not produce a node structure
listing in the map file.

The other map file switches are: ALOCMAF, NOALOOCP, SYXBJ,
NOSYBNAP * I, and NCODZO;P.

PROGRAXu sr.~zq

This swt:ch specifies a single string which is a named entry
with the name 'PROGRAN", and wh.ch also overri-des the
directive file name as the default name of the files produced
by the linker. If -PROGRAP.scrirng is entered. then strizn
replaces all occurrences of the formal parameter (programl in
the direct.ve file. In addition, scring becomes the default
name for the files produced by the linker (i.e., the map file.
load module file, debug file, and traceback file).

(See Sections 5.2.2 and s.3.2 for an example of program name
string replacement on the host system.)

RESERVE- { addr1, addr2)

This switch reserves memory space. Multiple RESERVE switches
are allowed.

This switch has the same functionality as the linker directive
RESERVE described in Chapter 4.

On MNMX hosted systems:

search(ofile-spec{, fi-le-spec... ..

On VAX hosted systems:

SEARCH(- (file-spec(,.fil'e-spec...1) }

On 1=X hosted systems, the parentheses may be amitted if only
one file-spec Is provided. When this switch is used, TLDInk
searches the specified files in the pattern described for the
SEARCH directive. Multiple SEARCH switches are allowed. NO
default file extension is assumed for this switch.

This switch has the same functionality as the linker directive
SEARCH described in Chapter 4.

7%M MW ý Law B-27

TLD EXTENDED MEMORY LINKER 1750A-LNK-3F
HoST DEPENDENCZES 5 - 10

On MNZZ hosted systems:

strings-• s--r".i.... }(,){name2,scr-4tg2,....

On VAX hosted systems:

The comma between the two types of strings is required to
separate them only if both types are used. On VAX hosted
systems. if only one string is specified, the parenthesis are
not required.

The strings specified in this switch are substituted for
formal parameters in the directive file. This capability
allows the creation of model direct.ve files with are tailored
by string substitution at each execution of TLDlnk. A formal
parameter in the directive file is a name or number surrounded
by braces ({}).

Strings of the form st=r7g1 are positional entries. The first
such entry replaces all occurrences of the formal parameter
(1) in the directive file, the second such entry replaces all
occurrences of the formal parameter (2), etc. Strings of the
form =aine2sscrx--g2 are named entries. The string srri=n2
replaces all occurrences of the formal parameter {name2) in
the directive file.

'f both positional entries and named entries appear, then all
the positional entries must precede the named entries.

:f there is no string specified for a formal parameter, then
"the null string is substituted for the formal parameter.

(See Sections 5.2.2 and 5.3.2 for an example of formal
parameter string replacement on the host system.)

SyH2bW
NOSY•MEAP

""he SYMMP switch., if used, must be used in combination with
"the MAP switch to produce a map file. The contents of the map
file depends on the other map file switches used in
cmbination with this switch and the WOP switch. By default.
this switch will produce a map file consisting of: 1) a list
of .nput switches and direct.ves, 2) an allocation map
(containing nodes, modules, control sections. and external
symbols), and 3) an alphabetical symbols listing (containing
external symbols sorted in alphabetical order) . The name of
the map file is derived according to the process explained in
the MAP switch descr.ption (above).

I -,a -AT"D= B-28

TLD EXTENDED MEMORY LINKER 1750A-LNK-3F
HOST DEPENDENCIES 5 - 11

The NOSYMSW switch, will not produce an alphabetical symbols
listing in the map file.

The other map file switches are: AMOCBJ, NGALOCEP, N=OQ ,
NONqDMfl , MMOAP, and NM BWP.

WARNTXG
1NOWARNNflG

This switch lists or suppresses warning messages. NOWARN=G
suppresses warning and intorma:ion messages.

5.2 VAX (VMS) HOST

This section provides descr.ptions for all host dependencies except for
Directive File host dependencies. They are discussed in Chapter 4.

5.2.1 VAX (VMS) EXECUTION

TL.lnk running under the VAX/VMS operating system is invoked by issuing

the following cao-and.

$ LNKTL={fi4e-swicch-.ist)
or

S LNK(file-swzcch-list}

if the abbreviated form is supported.

T.he syntax of a switch is a slash (/) followed by an option switch name
and, for certain switches, an equal sign (a), or interchangeably a colon
(:), followed by a value or list of values. If a list of values is
used, the list Is enclosed in parentheses and the individual values are
separated by commas.

/ svw =J.Dnae(uva.Lue (... }
or

7 I.0 M o &a= B-29

APPENDIX C

APPENDIX F OF THE Ad& STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix, are
provided by the customer. Unless specifically noted otherwise, references in
this Appendix are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are not a part
of Appendix F, are:

package STANDARD is
..........

type INTEGER is range -32768 .. 32767 ;

type LONWINTEGER is range -2-_147_483648 .. 2_147_483_647 ;

type FLOAT is digits 6 range -1.70141E+38 .. 1.70141E+38;

type LCNG_FLOAT is digits 9 range -1.70141183E+38 .. 1.70141183E+38;

type DURATION is delta 2.0**(-14) range -86400.0 .. 86400.0 ;

end STANDARD;

C-1

APPENDIX F

The Ada language definition allows for certain machine-dependencies in a
controlled manner. No machine-dependent syntax or semantic extensions or
restrictions are allowed. The only allowed implementation-dependencies
correspond to implementaton-dependent pragmas and attributes, certain
machine-dependent conventions, as mentioned in chapter 13 of the
MIL-STD-1815A; and certain allowed restrictions on representation
clauses.

The full definition of the implementation-dependent characteristics of
the TLD VAX/MIL-STD-1750A Ada Compiler System is presented in this
section.

C-2

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 6

STACK=stack size
STACK=2000 -° default

The number of words reserved for the program's stack is provided by
the STACK switch. The parameter stacksize is a hexadecimal
number. Stack space is allocated from the heap.

ALK also produces the files described below.

"o main prog.INC

This file is created by the Ada Compiler during the elaboration
step. Each line specifies an object file to be "included" in the
linker directive file. (Run time library units are not included).

"o mainprog$ELAB.OBJ
"o main prog$ELAB. LIS

These files contain the relocatable object and listing for the
elaboration subprogram. The file name is formed from the main
program name appended by the string "$ELAB". However, if the
length of the maximum host file name is exceeded by appending this
string, then the string replaces characters at the end of the main
program name.

For example:

$ ALK TEST/STACK=4000/INC=MYASM.OBJ

ALK invokes the Ada Compiler with the "/ELABORATE" switch to compile
elaborations and generate the .INC and .OBJ files. After successful
completion of the elaboration step, ALK generates a linker directive
file from data specified by the STACK switch, the .INC file, and files
specified by the INCLUDE switch. ALK will then invoke the linker to
produce the program load module (.LDM), the program map file (.MAP),
and the debugger information files (.DBG, .TRB, and .SYM).

5.2 LRM CORRESPONDENCE

This section identifies correspondences between features of the TLDacs
and sections of the Ada Language Reference Manual (LRM).

5.2.1 LRM CH.1 - INTRODUCTION

The formal standards for the Ada Programming Language are provided in
the Ada Lanciuage Reference Manual (LRM), ANSI/MIL-STD-181SA. TLD
Systems has developed TLDacs in the spirit of those standards.

C-3

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 7

The machine dependencies permitted by the Ada language are identified
in LRM Appendix F. No machine dependent syntax, semantic extensions,
or restrictions are allowed. The only acceptable implementation
dependencies are pragmas and attributes, the machine dependent
conventions explained in LRM Chapter 13, and some restrictions on
representation clauses.

TLD Systems has developed implementation-dependent software to
specifically conform to these restrictions and has developed
implementation-independent pragmas and attributes in the spirit of the
LRM. This software is described, below, in individual discussions that
follow the topical order (within chapters and appendices) of the LRM.
For a detailed description of the Run Time environment, refer to the
Reference Document for the TLD Ada Run Time System.

5.2.2 LRM CH.2 - LEXICAL ELEMENTS

The items described in this section correspond to the standards in
Chapter 2 of the LRM.

The following limits, capacities, and restrictions are imposed by
the Ada compiler implementation:

The maximum number of nesting levels for procedures is 10. There
is no limit to nesting of ifs, loops, cases, declare blocks, select
and accept statements.

The maximum number of lexical elements within a language statement,
declaration or pragma is not explicitly limited, but limited
depending on the combination of Ada constructs coded.

The maximum number of procedures per compilation unit is 500.

The maximum number of levels of nesting of INCLUDE files is 10.
There is no limit on the total number of INCLUDEd or WITHed files.

Approximately 2000 user-defined elements are allowed in a
compilation unit. The exact limit depends upon the characteristics
of the elements.

A maximum of 500 severe (or more serious) diagnostic messages are
allowed for a compilation.

The range of status values allowed is the same as the range of
integer values, -32_768 .. 32767.

The maximum number of parameters in a procedure call is 20.

C-4

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 8

The maximum number of characters in a name is 120.

The maximum source line length is 120 characters.

The maximum string literal length is 120 characters.

The source line terminator is determined by the editor used.

Name characters have external representation.

5.2.3 LRM CH.3 - DECLARATIONS AND TYPES

The items described in this section correspond to the standards in
Chapter 3 of the LRM.

Number declarations are not assigned addresses and their names are
not permitted as a prefix to the 'address attribute.

Objects are allocated by the compiler to occupy one or more 16 bit
words. Only in the presence of pragma Pack or record representation
clauses are objects allocated to less than a word.

'Address can be applied to a constant object to return the address
of the constant object.

Except for access objects, uninitialized objects contain an
undefined value. An attempt to reference the value of an
uninitialized object is not detected.

The maximum number of enumeration literals of all types is limited

only by available symbol table space.

The predefined integer types are:

Integer range -32_768 .. 32_767 and is implemented as single
precision fixed point data.

LongInteger range -2_147_483648 .. 2_147_483_647 and
implemented as double precision data.

ShortInteger is not supported.

System.Min Int is -2_147_483 648.
System.Max-Int is 2_147_483_647.

C-5

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 9

The predefined real types are:

Float digits 6.
LongFloat digits 9.
Short-Float is not presently supported.

System.MaxDigits is presently 9 and is implemented as 48-bit
floating point data.

There is no predefined fixed point type name. Fixed point types
are implemented as single or double precision data depending upon
the range of values by which the type is constrained.

Index constraints and other address values (e.g., access types) are
limited to an unsigned range of 0 .. 65_535 or a signed range of
-32_768 .. 32_767.

The maximum array size is limited to the size of virtual
memory: 64K words.

The maximum string length is 32_767.

Access objects are implemented as an unaigned 16 bit integer. The
access literal Null is implemented as one word of 0.

There is no limit on the number of dimensions of an array type.
Array types are passed as parameters opposite unconstrained formal
parameters using a 3 word dope vector illustrated below:

+ +

Word address of first element
Lower bound value of first dimension I

I Upper bound value of first dimension
+ +

Additional dimension bounds follow immediately for arrays with more
than one dimension.

Packed strings are generated instead of unpacked strings.

C-6

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 10

5.2.4 LPtI CH.4 - NAMES AND EXPRESSIONS

The items described in this section correspond to the standards in
Chapter 4 of the LRM.

MachineOverflows is True.

Pragma Controlled has no effect since garbage collection is never
performed.

5.2.5 LRM CH.5 - STATEMENTS

The items described in this section correspond to the standards in
Chapter 5 of the LRM.

The maximum number of statements in an Ada source program is
undefined and limited only by symbol table space.

Unless they are quite sparse, Case statements are allocated as
indexed jump vectors and therefore, are very fast.

Loop statements with a "for" implementation scheme are implemented
most efficiently if the range is in reverse and down to zero.

Data declared in block statements is elaborated as part of its
containing scope.

5.2.6 LRM CH.6 - SUBPROGRAMS

The items described in this section correspond to the standards in
Chapter 6 of the LRM.

Arrays, records, and task types are passed by reference.

5.2.7 LRM CH.7 - PACKAGES

The items described in this section correspond to the standards in
Chapter 7 of the LRM.

Package elaboration is performed dynamically, permitting a warm
restart without reloading the program.

C-7

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 11

5.2.8 LRM CH.8 - VISIBILITY RULES

Not applicable.

NOTE: TLD has not produced a modification of the item(s) described in
this LRM section or documentation parallel to the information in this
LRM section.

5.2.9 LRM CH.9 - TASKS

The items described in this section correspond to the standards in
Chapter 9 of the LRM.

Task objects are implemented as access types pointing to a Process
Control Block (PCB).

Type Time in package Calendar is declared as a record containing
two double precision integer values: the date in days and the real
time clock.

Pragma Priority is supported with a range defined in System_.Ada.

Pragma Shared is supported for scalar objects.

Package Calendar is described in the Reference Document for theTLD
Ada Run Time System. 1750A TarQet.

5.2.10 LRM CH.10 - PROGRAM STRUCTURE/COMPILATION

Ada Program Library processing is described in The Reference Document
for the TLD Ada Library Manager. 1750A Target.

Multiple Ada Program Libraries are supported with each library
containing an optional ancestor library. The predefined packages are
contained in the TLD standard library, 1750A.LIB

5.2.11 LRM CH.11 - EXCEPTIONS

Exception handling is described in the Reference Document for the TLD
Ada Run Time System. 1750A Target.

C-8

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 12

Exception objects are allocated access objects to the exception name
string. The implementation of exceptions is described in the Reference
Document for the TLD Ada Run Time System. 1750A Target.

Exceptions are implemented by the TLD Ada Compiler System to take
advantage of the normal policy in real time computer system design to
reserve 50% of the duty cycle. By executing a small number of
instructions in the prologue of a procedure or block containing an
exception handler, a branch may be taken, at the occurrence of an
exception, directly to a handler rather than performing the time
consuming code of unwinding procedure calls and stack frames. The
philosophy taken is that an exception signals an exceptional condition,
perhaps a serious one involving recovery or reconfiguration, and that
quick response in this situation is more important and worth the small
throughput tradeoff in a real time environment.

5.2.12 LRM CH.12 - GENERIC UNITS

Generic implementation is described in the Reference Document for the
TLD Ada Run Time System. 1750A Target.

A single generic instance is generated for a generic body, by default.
Generic specifications and bodies need not be compiled together nor
need a body be compiled prior to the compilation of an instantiation.
Because of the single expansion, this implementation of generics tends
to be more favorable of space savings. To achieve this tradeoff, the
instantiations must, by nature, be more generý... and are, therefore,
somewhat less efficient timewise. Refer to pragma INSTANTIATE for more
information on controlling instantiation of a generic.

5.2.13 LRM CH.13 - CLAUSES/IMPLEMENTATION

Package System definitions are described in Section 5.2.B of this
manual.

Representation clause support and restrictions are generally described
in Section 5.2.F.

C-9

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 13

Additional Information

A comprehensive MachineCode package is provided and supported.

UncheckedDeallocation and UncheckedConversion are supported.

The implementation-dependent attributes are all supported except
'StorageSize for an access type.

Procedure UncheckedDeallocation (LRM 13.10.1)

Function UncheckedConversion (LRM 13.10.2)

5.2.14 LRM CH.14 - INPUT/OUTPUT

The items described in this section correspond to the standards in
Chapter 14 of the LRM.

File I/O operations are not supported.

Input/output packages and associated operations are explained in
Section 5.2.F of this manual.

5.2.A LRM APP.A - PREDEFINED LANGUAGE ATTRIBUTES

The items referenced in this section correspond to the standards in
Appendix A of the LRM.

All LRM-defined attributes are supported by the TLDacs.

5.2.B LRM APP.B - PREDEFINED LANGUAGE PRAGMAS

The items described in this section correspond to the standards in
Appendix B of the LRM. Any differences from the implementation
described in the LRM are listed below.

PRAGMA CONTROLLED

This pragma is not supported.

c-10

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 14

PRAGMA ELABORATE

This pragma is implemented as described in the LRM.

PRAGMA INLINE

This pragma is implemented as described in the LRM.

PRAGMA INTERFACE

pragma interface (languagename, Adaentity name{, string));
pragma interface (system, Ada entity_name, BEXnumber, R2_value);
pragma interface (indirect, name);
pragma interface (direct, name);
pragma interface (MIC, subprogramname);

Pragma Interface allows references to subprograms and objects that
are defined by a foreign module coded in a language other than Ada.

The following interface languages are supported:

"o System for producing a call obeying the standard calling
conventions except that the BEX instruction is used to produce a
software interrupt into the kernel supervisor mode.

"o Assembly for calling Assembly language routines;
"o MIL-STD-1750A for defining built-in instruction procedures.
"o C for calling C coded routines.

If the Adaentity name is a subprogram, LRM rules apply to the
pragma placement. Pragma Interface may be applied to overloaded
subprogram names. In this case, pragma Interface applies to all
preceding subprogram declarations if those declarations are not the
target of another pragma Interface.

For example:

package Test is
procedure PI;
pragma Interface (Assembly, P1, "AsmRoutinel");
procedure P1 (x:Long_Float);
pragma Interface (Assembly, P1, "AsmRoutine_2");

end Test;

In the example above, the first pragma Interface applies to the
first declaration of procedure P1. The second pragma Interface
applies to only the second declaration of procedure P1 because the
first declaration of P1 has already been the object of a preceding
pragma Interface.

C-i1

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 15

If the AdaEntity Name is an object, the pragma must be placed
within the same declarative region as the declaration, after the
declaration of the object, and before any reference to the object.

If the third parameter is omitted, the Ada name is used as the name
of the external entity and the resolution of its address is assumed
to be satisfied at link time by a corresponding named entry point
in a foreign language module.

If the optional string parameter is present, the external name
provided to the linker for address resolution is the contents of
the string. Therefore, this string must represent an entry point
in another module and must conform to the conventions of the linker
being used.

An object designated in an Interface pragma is not allocated any
space in the compilation unit containing the pragma. Its
allocation and location are assumed to be the responsibility of the
defining module.

When pragma Interface has the system parameter, it tells the
compiler what values apply to BEX and R2 when the adaentityname
is used.

When the /INDIRECT option is used, the specified procedure,
function, or package is called indirectly.

When the /DIRECT option is used, the specified procedure, function,
or package elaboration code is called directly. This pragma
overrides the /INDIRECT switch.

Pragma Interface with the MIC option is ignored unless the command
line switches /TARGET=1750A and /MODEL=VAMP appear. The Ada
Compiler marks the subprogram name specified as a VAMP microcode
subprogram. If a call is made to a subprogram of this type, a
diagnostic is issued. An attribute reference may be made to these
subprograms with the attribute designator 'ADDRESS. This reference
is implemented as a reference to an import symbol whose value is to
be satisfied by TLDlnk.

PRAGMA LIST

pragma List (on I off);

Compiler switch /LIST must be selected for the pragma List to be
effective.

C-12

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 16

PRAGMA MEMORYSIZE

pragma Memory_Size (numericliteral);

This pragma is not supported. This number is declared in package
System.

PRAGMA OPTIMIZE

This pragma is not supported. Compiler switches control compiler
optimization.

PRAGMA PACK

This pragma is implemented as defined in the LRM.

PRAGMA PAGE

This pragma is implemented as defined in the LPR4.

PRAGMA PRIORITY

This pragma is implemented as defined in the LRM. Priority
contains a range defined in System_.Ada.

PRAGMA SHARED

This pragma is implemented as defined in the LRM. This pragma may
be applied only to scalar objects.

PRAGMA STORAGE-UNIT

pragma Storage-Unit (numericliteral);

This pragma is not supported. This number is declared in package
System and has 16 bits per word.

C-13

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 17

PRAGMA SUPPRESS

pragma Suppress (accesscheck);
pragma Suppress (all_checks);

The all checks parameter eliminates all run time checks with a
single pragma. In addition to the pragma, a compiler switch
permits control of run time check suppression by command line
option, eliminating the need for source changes.

pragma Suppress (discriminant_check);
pragma Suppress (divisioncheck);
pragma Suppress (elaborationcheck);
pragma Suppress (exception-info);

Suppressing exceptioninfo eliminates data and code used to provide
symbolic debug information in the event of an unhandled exception.

pragma Suppress (indexcheck);
pragma Suppress (length-check);
pragma Suppress (rangecheck);
pragma Suppress (overflowcheck);
pragma Suppress (storagecheck);

PRAGMA SYSTEMNAME

pragma SystemName (enumerationliteral);

This pragma is not supported. Instead, compiler option is used to
select the target system and target Ada library for compilation.

5.2.C LRM APP.C-PREDEFINED LANGUAGE ENVIRONMENT

The items described in this section correspond to the standards in
Appendix C of the LRM.

PACKAGE STANDARD

The following are predefined types of package Standard that are
intrinsic to the compiler:

type Boolean is (False, True);

C-14

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 18

-- The predefined relational operators for this type are as follows:

function "= (Left, Right Boolean) return Boolean;
function "/=" (Left, Right : Boolean) return Boolean;
function "<" (Left, Right : Boolean) return Boolean;
function "<=" (Left, Right Boolean) return Boolean;
function ">" (Left, Right Boolean) return Boolean;
function ">=" (Left, Right : Boolean) return Boolean;

-- The predefined logical operators and the predefined logical
-- negation are as follows:

function "and" (Left, Right : Boolean) return Boolean;
function "or" (Left, Right Boolean) return Boolean;
function "xor" (Left, Right : Boolean) return Boolean;
function "not" (Right : Boolean) return Boolean;

-- The universal type universal_integer is predefined.

-- type Short Integer is not implemented for 1750A.

type Integer is range -2**15 2**15-1;
-- : range -32768 32767

-- The predefined operators for this type are as follows:

function "=" (Left, Right : Integer) return Boolean;
function "/=" (Left, Right : Integer) return Boolean;
function "<" (Left, Right : Integer) return Boolean;
function "<=" (Left, Right : Integer) return Boolean;
function ">" (Left, Right : Integer) return Boolean;
function ">=" (Left, Right Integer) return Boolean;

function "+" (Right : Integer) return Integer;
function "-" (Right : Integer) return Integer;
function "abs" (Right : Integer) return Integer;

function "+" (Left, Right : Integer) return Integer;
function "-" (Left, Right : Integer) return Integer;
function "" (Left, Right : Integer) return Integer;
function "/" (Left, Right : Integer) return Integer;
function "rem" (Left, Right : Integer) return Integer;
function "mod" (Left, Right : Integer) return Integer;

function "**" (Left : Integer, Right : Integer) return Integer;

type LongInteger is range -2*-31 .. 2**31-1;
-- : range -2,147,483,648 .. 2,147,483,647

-- The predefined operators for this type are as follows:

C-15

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 19

function "=" (Left, Right : LongInteger) return Boolean;
function "1=" (Left, Right Long_Integer) return Boolean;
function "<" (Left, Right Long_Integer) return Boolean;
function "<=" (Left, Right LongInteger) return Boolean;
function ">" (Left, Right LongInteger) return Boolean;
function ">=" (Left, Right : LongInteger) return Boolean;

function "+" (Right Long Integer) return LongInteger;
function "-" (Right Long Integer) return Long Integer;
function "abs" (Right Long Integer) return LongInteger;

function "+" (Left, Right : LongInteger) return Long_Integer;
function "-" (Left, Right : LongInteger) return LonglInteger;
function "*" (Left, Right : Long-Integer) return Long_Integer;
function "/" (Left, Right : Long_Integer) return LongInteger;
function "rem" (Left, Right : LongInteger) return LongInteger;
function "mod" (Left, Right : LongInteger) return Long_Integer;

function "**" (Left : LongInteger, Right : Integer)
return LongInteger;

-- The universal type universalreal is predefined.

-- type ShortFloat is not implemented for 1750A.

type Float is digits 6 range -1.70141E+38 .. 1.70141E+38;

-- The predefined operators for this type are as follows:

function "=" (Left, Right : Float) return Boolean;
function "1=" (Left, Right : Float) return Boolean;
function "<" (Left, Right Float) return Boolean;
function "<=" (Left, Right : Float) return Boolean;
function '>1" (Left, Right : Float) return Boolean;
function ">=" (Left, Right Float) return Boolean;

function "+" (Right : Float) return Float;
function "-" (Right Float) return Float;
function "abs" (Right : Float) return Float;

function "+" (Left, Right : Float) return Float;
function "-" (Left, Right : Float) return Float;
function "" (Left, Right : Float) return Float;
function "/" (Left, Right Float) return Float;

function "**" (Left : Float, Right : Integer) return Float;

type LongFloat is digits 9 range -1.70141183E+38 .. 1.70141183E+38;

C-16

TLD ADA COMPILER 1750A-ADA-2C
MZL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 20

-- The predefined operators for this type are as follows:

function "=" (Left, Right : Long_Float) return Boolean;
function "/=" (Left, Right : LongFloat) return Boolean;
function "<" (Left, Right : Long_Float) return Boolean;
function "<=" (Left, Right : Long_Float) return Boolean;
function ">" (Left, Right : LongFloat) return Boolean;
function ">=" (Left, Right : Long_Float) return Boolean;

function "+" (Right : Long-Float) return LongFloat;
function "-" (Right : LongFloat) return Long-Float;
function "abs" (Right : Long-Float) return Long-Float;

function "+" (Left, Right : Long_Float) return Long Float;
function "-" (Left, Right : Long_Float) return LongFloat;
function "*" (Left, Right : Long_Float) return Long-Float;
function "/" (Left, Right : Long_Float) return LongFloat;

function "**h (Left : Long-Float, Right : Integer)
return LongFloat;

-- The following operators are predefined for universal types:

function "*" (Left : universal_integer, Right : universalreal)
return universalreal;

function l*" (Left : universal_real, Right : universalinteger)
return universal-real;

function "I" (Left : universalreal, Right : universal_integer)
return universalreal;

-- The type universalfixed is predefined. The only operators
-- for this type are:

function "*" (Left : any_fixed_pointtype,
Right : anyfixedpointtype) return universal_fixed;

function "I" (Left : anyfixedpoint type,
Right : any_fixedpointtype) return universalfixed;

type Character is
nul, soh, stx, etx, eot, enq, ack, bel,
bs, ht, lf, vt, ff, cr, SO, si,
dle, dcl, dc2, dc3, dc4, nak, syn, etb,
can, em, sub, esc, fs, go, ra, us,

0, 10,2, 03), ,.,, ,+ .. -i,
P8', '9', ''', I e;,, '< ', '= ,' '>1', . ,

C-1 7

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 21

POP, WA , IW O PC', 'D', 'E , 'F', 'Go,

'H', 'I', 'J', 'K', 'L', 'I', N', POP,
'P P Q', PRO, 'S', 'T', 'U', 'V', 'W'
'x', 'Y', 'Zj, [' , '1',]' , ,A, , #o,

PO, a,' a , 'b', 'c', 'd', Pe', If,, 'g',
Ph', 'i', 'j', 'k', 1 , ' I' m', In', $of,
'p', 'q', 'r', 'so, 't', 'u', Ov', Iwo,
IxI, 'y', 'zo, If', '11, 1}', 1-0, del);

for Character use
nul, soh, stx, etx, eot, enq, ack, bel,

0, 1, 2, 3, 4, 5, 6, 7,
bs, ht, if, vt, ff, cr, so, Si,

8, 9, 10, 11, 12, 13, 14, 15,
dle, dcl, dc2, dc3, dc4, nak, syn, etb,
16, 17, 18, 19, 20, 21, 22, 23,
can, em, sub, esc, fs, gs, rs, us,
24, 25, 26, 27, 28, 29, 30, 31,

l 1, 1 1 PO , #1 1$, !k I ,

32, 33, 34, 35, 36, 37, 38, 39,,(, ,), *, , ,,, . 1/1,

40, 41, 42, 43, 44, 45, 46, 47,
10 , 10 12 , l31 141 l0 161 17

48, 49, 50, 51, 52, 53, 54, 55,
'8', 19', ''', 1 ;', '<', '.', 1>', ?:'

56, 57, 58, 59, 60, 61, 62, 63,

' ', WA , 'B', C', 'D', PEP, IF', 'G',
64, 65, 66, 67, 68, 69, 70, 71,
'H', 01', 'J', 'K'o ILI, 'MI IN#, 'O ,
72, 73, 74, 75, 76, 77, 78, 79,
P', IQ', PRO, IS', IT , 'U', IV', IWI

80, 81, 82, 83, 84, 85, 86, 87,
IX , 'Y' #I I , 1 1 0, 10" •

88, 89, 90, 91, 92, 93, 94, 95,

PO, ,' Pat, 'b', 'c', 'd', 'e', If,, 'g ,
96, 97, 98, 99, 100, 101, 102, 103,

Oh , O l j', Ik , '1 , 'm', In', 'O',

104, 105, 106, 107, 108, 109, 110, 111,
'p', 'q', or', Is', #t', IW O IW O 'w',

112, 113, 114, 115, 116, 117, 118, 119,IWO, 'y', 'z', 1(#, 11', ')1, 1-', del
120, 121, 122, 123, 124, 125, 126, 127);

-- The predefined operators for the type Character are the
-- same as for any enumeration type.

C-18

TLD ADA COMPILER 1750A-ADA-2C
MZL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 22

The following are implementation-defined types of package Standard:

-- The following are control characters:

NUL: constant Character Character'Val(o);
SOH: constant Character := Character'Val(l);
STX: constant Character := Character'Val(2);
ETX: constant Character := Character'Val(3);
EOT: constant Character := Character'Val(4);
ENQ: constant Character := Character'Val(5);
ACK: constant Character := Character'Val(6);
BEL: constant Character := Character'Val(7);
BS : constant Character := Character'Val(8);
HT : constant Character := Character'Val(9);
LF : constant Character := Character'Val(10);
VT : constant Character := Character'Val(ll);
FF : constant Character := Character'Val(12);
CR : constant Character Character'Val(13);
SO : constant Character := Character'Val(14);
SI : constant Character := Character'Val(15);
DLE: constant Character := Character'Val(16);
DCl: constant Character := Character'Val(17);
DC2: constant Character := Character'Val(18);
DC3: constant Character := Character'Val(19);
DC4: constant Character := Character'Val(20);
NAK: constant Character := Character'Val(21);
SYN: constant Character := Character'Val(22);
ETB: constant Character := Character'Val(23);
CAN: constant Character := Character'Val(24);
EM : constant Character := Character'Val(25);
SUB: constant Character := Character'Val(26);
ESC: constant Character := Character'Val(27);
FS : constant Character := Character'Val(28);
GS : constant Character := Character'Vall(29);
RS : constant Character := Character'Val(30);
US : constant Character := Character'Val(31);
DEL: constant Character := Character'Val(127);

-- The following are other characters:

Exclam : constant Character := '!';
Quotation : constant Character :=
Sharp constant Character :=
Dollar : constant Character :=
Percent : constant Character := ;
Ampersand : constant Character :=&;
Colon : constant Character := '-';
Semicolon : constant Character :=
Query : constant Character :,?;

C-19

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 23

At Sign : constant Character := 'f';
L_Bracket constant Character := ' [;
Back Slash : constant Character '
R_Bracket : constant Character := '3';
Circumflex constant Character -,
Underline constant Character '

Grave constant Character :=
L Brace constant Character :=
Bar constant Character := 'I';
R_Brace : constant Character := ;
Tilde : constant Character =-~;

LcA: constant Character := 'a'; LcN: constant Character :=n';
LcB: constant Character := 'b'; Lc_0: constant Character := 'o';
LcC: constant Character := 'c'; LcP: constant Character :=p';
LcD: constant Character := 'd'; LcQ: constant Character :=q;
LcE: constant Character := 'e'; LcR: constant Character := r
LcF: constant Character := 'f'; LcS: constant Character :=s';
LcG: constant Character := 'g'; LcT: constant Character :=t';
LcH: constant Character := 'h'; LcU: constant Character :=u;
Lc_I: constant Character := 'i'; LcV: constant Character :=v;
LcJ: constant Character := 'j'; LcW: constant Character :=w;
LcK: constant Character := 'k'; LcX: constant Character :=x';
LcL: constant Character := '1'; LcY: constant Character :=y;
LcM: constant Character := 'im'; LcZ: constant Character :=z;

-- The following are predefined subtypes:

subtype Natural is Integer range O..Integer'LAST;
subtype Positive is Integer range 1..Integer'LAST;

-- The following is a predefined string type:

type String is array(Positive range <>) of Character;
pragma Pack(String);

-- The predefined operators for this type are as follows:

function "=" (Left, Right : String) return Boolean;
function "1=" (Left, Right : String) return Boolean;
function "c" (Left, Right : String) return Boolean;
function '<=" (Left, Right : String) return Boolean;
function ">" (Left, Right : String) return Boolean;
function "=2. (Left, Right : String) return Boolean;
function "&" (Left, Right : String) return Boolean;
function "&" (Left, Right : String) return Boolean;
function "&" (Left, Right : String) return Boolean;
function "&" (Left, Right : String) return Boolean;

C-20

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 24

type Duration is delta 2.0**(-14) range -86_400.0..86_400.0;
o- : 32 bits with 12 bits for fractional part.

-- The predefined operators for type Duration are the same as for any
-- fixed point type.

-- The following are predefined exceptions:

ConstraintError exception;
NumericError exception;
Program Error exception;
Storage Error : exception;
TaskingError : exception;

5.2.D LRM APP.D - GLOSSARY

Not applicable.

5.2.E LRM APP.E - SYNTAX SUMMARY

Refer to "Appendix B. Ada Language Syntax Cross Reference" for the TLD
cross-referenced expression of this information.

5.2.F LRM APP.F - IMPLEMENTATION CHARACTERISTICS

The items described in this section correspond to the standards in
Appendix F of the LRM.

IMPLEMENTATION-DEPENDENT PRAGMAS

PRAGMA ATTRIBUTE

pragma Attribute (Attribute-Name=>Attribute-Value, -
Item-Name{ });

This pragma allows grouping of control sections with the specified
attribute.

If Item-Name is omitted, the specified attribute applies to all
control sections in the current module.

If Item-Name is Name'csect, the specified attribute applies to the
control section of the module containing Name. Name may be a
label, procedure, or data object.

C-21

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 25

If Item-Name is Name'code, the specified attribute applies to the
code control section of the module containing Name.

If Item-Name is Name'data, the specified attribute applies to the
data control section of the module containing Name.

If Item-Name is Narne'constant, the specified attribute applies to
the constant control section of the module containing Name.

No other form of Item-Name is allowed.

The linker directives GROUP and SET, described in Chapter 4 of the
Reference Document for the TLD Linker can refer to attributes in
pragma Attribute in the source file.

PRAGMA AUDIT

pragma Audit (Ada-name{

This pragma causes an error message to be generated for the
compilation in which an Ada name, that is specified by this pragma,
is referenced. The Ada name may be a package, scope, data, etc.

PRAGMA COLLECT

pragma Collect (typename, attribute);

The only value presently permitted for attribute is "unmapped",
which tells the compiler to collect all objects and subtypes of
type_name into unmapped control sections. An unmapped control
section is allocated a physical memory not covered by a page
register. Unmapped control sections are accessed from a device by
DMA or by IBM GVSC extended instructions. See Section 3.2.3.1,
"Unmapped Control Sections," in the Reference Document for the TLD
Extended Memory Linker,

PRAGMA COMPRESS

pragma Compress (subtype name);

This pragma is similar to pragma Pack, but has subtly different
effects. Pragma Compress accepts one parameter: the name of the
subtype to compress. It is implemented to minimize the storage
requirements of subtypes when they are used within structures
(arrays and records). Pragma Compress is similar to pragma Pack in
that it reduces storage requirements for structures, and its use

C-22

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 26

does not otherwise affect program operation. Pragma Compress
differs from pragma Pack in the following ways:

" Unlike pragma Pack, pragma Compress is applied to the subtypes
that are later used within a structure. It is n= used on the
structures themselves. It only affects structures that later
use the subtype; storage in stack frames and global data are
unaffected.

" Pragma Compress is applied to discrete subtypes only. It
cannot be used on types.

" Pragma Compress does not reduce storage to the bit-level. It
reduces storage to the nearest "natural machine size". This
increases total storage requirements, but minimizes the
performance impact for referencing a value.

For example:

subtype SmallInt is Integer range 0 .. 255;
pragma Compress(SmallInt);
type NumArray is array (1 .. 1000) of Small_Int;

In this example, SmallInt will be reduced from a 16-bit object to
an unsigned 8-bit object when used in NumArray.

If pragma Compress had not been used then Small Int would be the
same size as Integer. This is because a subtype declaration should
not change the underlying object representation. A subtype
declaration should only impose tighter constraints on bounds. In
this manner a subtype does not incur any extra overhead (other than
its range checking), when compared with its base type. Pragma
Compress is used in those cases where the underlying representation
should change for the subtype, therefore:

"o SmallInt is compatible with Integer. It may be used anywhere
an integer is allowed. This includes out and in out parameters
to subprograms.

"o A SmallInt object is the same size as Integer when used by
itself. This minimizes run time overhead requirements for
single objects allocated in the stack or as global data.

"o SmallInt is 8 bits when used within a record or an array.
This can dramatically reduce storage requirements for large
structures. The access performance for compressed elements is
very near that of the un-compressed elements, but a slight
performance cost is incurred when the compressed value is
passed as an out or in out parameter to a subprogram.

C-23

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 27

NOTE: SmallInt's storage requirements could be reduced by
declaring it as a type rather than a subtype, however, Small Int
would not be compatible with Integer, and this could cause
considerable problems for some users.

PRAGMA CONTROL_SECTION

pragma ControlSection (usect,unmapped,objectname -

(,object-name...}));

This pragma identifies data objects that are to be put into
unmapped control sections. The first two parameters must be
"usect" and "unmapped." The remaining parameters are names of Ada
objects. An unmapped control section is allocated a physical
memory location not covered by page register. Unmapped control
sections are accessed from a device by DMA or by IBM GVSC extended
instructions. See Section 3.2.3.1, "Unmapped Control Sections," in
the Reference Document for the TLD Extended Memory Linker,

PRAGMA CONTIGUOUS

pragma Contiguous (type name I objectname);

This pragma is used as a query to determine whether the compiler
has allocated the specified type of object in a contiguous block of
memory words.

The compiler generates a warning message if the allocation is
noncontiguous or is undetermined. The allocation is probably
noncontiguous when data structures have dynamically sized
components. The allocation is probably undetermined when
unresolved private types are forward type declarations.

This pragma provides information to the programmer about the
allocation scheme used by the compiler.

PRAGMA EXPORT

pragma Export (languagename, ada_entity name, {string));

Pragma Export is a complement to pragma Interface. Export directs
the compiler to make the ada entity_name available for reference by
a foreign language module. The languagename parameter identifies
the language in which the module is coded.

Assembly is presently supported by Export. Ada and JOVIAL are
permitted and presently mean the same as Assembly. The semantics

C-24

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 28

of their use are subject to redefinition in future releases of
TLDada. Void may be used as the language name to specify the
user's language convention. As a result of specifying Void, the
Compiler will not allocate local stack space, will not perform a
stack check, and will not produce prologue and epilogue code. If
the optional third parameter, string, is used, the string provides
the name by which the entity may be referenced by the foreign
module. The contents of this string must conform to the
conventions for the indicated foreign language and the linker being
used. TLDada does not make any checks to determine whether these
conventions are obeyed.

Pragma Export supports only objects that have a static allocation
and subprograms. If the ada entity name is a subprogram, this
Export must be placed in the same scope within the declarative
region. If it is an object, the ada entity name must follow the
object declaration.

NOTE: The user should be certain that the subprogram and object
are elaborated before the reference is made.

-PRAGMA IF

pragma If (compile time expression);
pragma Elsif (compile_timeexpression);
pragma Else;
pragma End{ if};

These source directives may be used to enclose conditionally
compiled source to enhance program portability and configuration
adaptation. These directives may be located where language defined
pragmas, statements, or declarations are allowed. The source code
following these pragmas is compiled or ignored (similar to the
semantics of the corresponding Ada statements), depending upon
whether the compile time-expression is true or false,
respectively. The primary difference between these directives and
the corresponding Ada statements is that the directives may enclose
declarations and other pragmas.

NOTE: To use the pragma IF, ELSEIF, ELSE, or END, the /XTRA
switch must be used.

C-25

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 29

PRAGMA INCLUDE

pragma Include (filepath-name string);

This source directive in the form of a language pragma permits
inclusion of another source file in place of the pragma. This
pragma may occur any place a language defined pragma, statement, or
declaration may occur. This directive is used to facilitate source
program portability and configurability. If a partial
filepath namestring is provided, the current default pathname is
used as a template. A file name must be provided.

NOTE: To use the pragma INCLUDE, the /XTRA switch must be used.

PRAGMA INSTANTIATE

pragma Instantiate (option{, name));

This pragma is used to control instantiation of a particular
generic.

To establish a default mode of instantiation for all generic
instantiations within the compilation, the following switch may be
entered on the TLDada coimmand line and used instead of this pragma:

/instantiate=option

In either the pragma or switch, option instructs the Compiler to
instantiate generics in the manner specified, as described below:

single body - a single body is used for all instantiations

macro - each instantiation produces a different body

In this pragma, name is the name of the generic to which this
pragma applies.

There are two basic forms for this pragma. The first form omits
the second parameter, is associated with a generic declaration, and
is permitted to occur only within a generic formal part (i.e.,
after "generic" but before "procedure", "function", or "package").
In this form, the pragma establishes the default mode of
instantiation for that particular generic.

The second form uses the second parameter, is associated with the
instantiation, and may appear anywhere in a declarative part except
within a generic formal part. This form specifies what mode is to
be used for the instantiation of the named generic which follows in
the scope in which the pragma appears. This form of the pragma
takes precedence over the first form.

C-26

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 30

In the following example, assume the following definiton:

generic
pragma instantiate(single body); -- pragma 1
package G ...
end G;

generic
pragma instantiate(macro); -- pragma 2
package H ...
end H;

package A is new G(...
package B is new G(...);
package C is new H(...);
package D is new H(...);

pragma instantiate(macro, G); -- pragma 3

package E is new G(...);
package F is new G(...);

In the above example, packages A and B share the same body, due to
pragma 1. Packages C, D, E, and F will be treated as macro
instantiation C and D because macro instantiation is the default
for H (due to pragma 2) and for E and F because they follow pragma
3.

In both the pragma and switch:

"o Nested instantiations and nested generics are supported and
generics defined in library units are permitted.

"o It is not possible to perform a macro instantiation for a
generic whose body has not yet been compiled.

In this pragma:

o It is also not possible to perform a macro instantiation
from inside a single-bodied instantiation, because the
macro instantiation requires information at compile time
which is only available to a single-bodied generic at
execution time.

C-27

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 31

In the event of a conflict between the pragma and switch, the
switch takes precedence.

PRAGMA INTERFACENAME

pragma InterfaceName (Ada entityname, string);

This pragma takes a variable or subprogram name and a string to be
used by the Linker to reference the variable or subprogram. It has
the same effect as the optional third parameter to pragma
Interface.

PRAGMA INTERRUPT-KIND

pragma Interrupt-Kind (entry_name, entry type{, duration});

An interrupt entry is treated as an "ordinary" entry in the absence
of pragma Interrupt_Kind. When pragma Interrupt-Kind is used, an
interrupt entry may be treated •s a "conditional" or "timed" entry.

This pragma must appear in the task specification containing the
entry named and after the entry name is declared. Three
entry types are possible: ordinary, timed, and conditional. The
optional parameter duration is applicable only to timed entries and
is the maximum time to wait for an accept.

For an ordinary entry, if the accept is not ready, the task is
queued. For a conditional entry, if the accept is not ready, the
interrupt is ignored. For a timed entry, if the accept is not
ready, the program waits for the period of time specified by the
duration. If the accept is not ready in that period, the interrupt
is ignored.

PRAGMA LOAD

pragma Load (literalstring);

This pragma makes the Compiler TLDada include a foreign object
(identified by the literal-string) into the link command.

C-28

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 32

PRAGMA MONITOR

pragma Monitor;

The pragma Monitor can reduce tasking context overhead by
eliminating context switching. This pragma identifies invocation
by the compiler. With pragma Monitor, a simple procedure call is
used to invoke task entry.

Generally, pragma Monitor restricts the syntax of an Ada task,
limiting the number of operations the task performs and leading to
faster execution.

The following restrictions pertain to Ada constructs in monitor

tasks:

"o Pragma Monitor must be in the task specification.

"o Monitor tasks must only be declared in library-level,
non-generic packages.

"o Monitor tasks may contain data declarations only within the
accept statement.

"o A monitor task consists of an infinite loop containing one
select statement.

"o The "when condition" is not allowed in the select alternative of
the select statement.

"o The only selective wait alternative allowed in the select
statement is the accept alternative.

"o All executable statements of a monitor task must occur within an
accept statement.

"o Only one accept statement is allowed for each entry declared in
the task specification.

If a task body violates restrictions placed on monitor tasks, it is
identified as erroneous and the compilation fails.

C-29

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 33

PRAGMA NO_DEFAULTINITIALIZATION

pragma No-DefaultInitialization;
pragma NoDefaultInitialization (typename{,... });

The LRM requires initialization of certain Ada structures even if
no explicit initialization is included in the code. For example,
the LRM requires access_type objects to have an initial value of
"NULL." Pragma NoDefault_Initialization prevents this default
initialization.

In addition, initialization declared in a type statement is
suppressed by this pragma.

TLD implementation of packed records or records with representation
clauses includes default initialization of filler bits, i.e., bits
within the allocated size of a variant that are not associated with
a record component for the variant. NoDefaultInitialization
prevents this default initialization.

This pragma must be placed in the declarative region of the
package, before any declarations that require elaboration code.
The pragma remains in effect until the end of the compilation unit.

NOTE: To use the pragma, NO DEFAULTINITIALIZATION, the /XTRA
switch must be used. The use of this pragma may affect the
results of record comparisons and assignments.

PRAGMA NOELABORATION

pragma no-elaboration;

Pragma NoElaboration is used to prevent the generation of
elaboration code for the containing scope. This pragma must be
placed in the declarative region of the affected scope before any
declaration that would otherwise produce elaboration code.

This pragma prevents the unnecessary initialization of packages
that are initialized by other non-Ada operations. Pragma
No Elaboration is used to maintain the Ada Run Time Library
(TLDrtl).

C-30

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 34

For example:

package Test is
Pragma No Elaboration;
for ProgramStatusWord use

record at mod 8;
System Mask at O*WORD range 0..7;
Protection-Key at O*WORD range 10 .. 11; -- bits 8,9 unused

end record;
end Test;

In the above example, the NoElaboration pragma, prevents the
generation of elaboration code for package Test since it contains
unused bits.

NOTE: To use the pragma, NOELABORATION, the /XTRA switch must
be used. The use of this pragma may affect the results of record
comparisons and assignments.

PRAGMA NO-ZERO

pragma No-Zero (record type_name);

If the named record type has "holes" between fields that are
normally initialized with zeroes, this pragma will suppress the
clearing of the holes. If the named record type has no "holes",
this pragma has no effect. When zeroing is disabled, comparisons
(equality and non-equality) of the named type are disallowed. The
use of this pragma can significantly reduce initialization time for
record objects.

PRAGMA PUT

pragma Put (value{, ... });

Pragma Put takes any number of arguments and writes their value to
standard output at compile time when encountered by the Compiler.
The arguments may be expressions of any string, enumeration,
integer type, or scalar expression (such as integer'size) whose
value is known at compile time. This pragma prints the values on
the output device without an ending carriage return; pragma
PutLine is identical to this pragma, but adds a carriage return
after printing all of its arguments.

C-31

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 35

This pragma is useful in conditionally-compiled code to alert the
programmer to problems that might not otherwise come to his
attention via an exception or a compile-time error.

This pragma may appear anywhere a pragma is allowed.

PRAGMA PUTLINE

pragma Put-Line (value{, ... });

Pragma PutLine takes any number of arguments and writes their
value to standard output at compile time when encountered by the
Compiler. The arguments may be expressions of any string,
enumeration, integer type, or scalar expression (such as
integer'size) whose value is known at compile time. This pragma
prints the values on the output device and adds a carriage return
after printing all of its arguments; pragma Put is identical to
this pragma, but prints the values without an ending carriage
return.

This pragma is useful in conditionally-compiled code to alert the
programmer to problems that might not otherwise come to his
attention via an exception or a compile-time error.

This pragma may appear anywhere a pragma is allowed.

PRAGMA REGISTER

pragma Register (object-name, registernumber);

This pragma allows limited register dedication to an object for the
purpose of loading registers with complex Ada expressions or
storing registers into complex operands within machine code
insertion subprograms. The Compiler dedicates the specified
register to the specified object until the end of the scope is
reached or until it is released through a call to the subroutine,
Unprotect, in the machine Code package. The objectname is the
name of the object to be dedicated to the register and
registernumber is the register number (without the "R" prefix that
is valid for the particular target).

These objects may be used on the left or right side of an
assignment statement to load or store the register, respectively.

C-32

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 36

PRAGMA TCBEXTENSION

pragma TCBExtension (value);

This pragma is used to extend the size of the Task Control Block on
the stack. It can be used only within a task specification. The
parameter passed to this program must be static and represents the
size to be extended in bytes.

PRAGMA WITHIN_PAGE

pragma Within-Page (typename I object name);

NOTE: The typename or object-name must have been previously
declared in the current declaration region and these declarations
must be in a static data context (i.e., in a package
specification or body that is not nested within any procedure or
function).

This pragma instructs the compiler to allocate the specified
object, or each object of the specified type, as a contiguous block
of memory words that does not span any page boundaries (a page is
4096 words).

The compiler generates a warning message if the allocation is
noncontiguous or not yet determined (see the description of pragma
Contiguous, above). Additionally, the compiler generates a warning
message if the pragma is in a nonstatic declarative region. If an
object exceeds 4096 words, it is allocated with an address at the
beginning of a page, but it spans one or more succeeding page
boundaries and a warning message is produced.

PRAGMA VOLATILE

pragma Volatile (variablesimple name);

This pragma performs the same function as Pragma Shared, however,
it also applies to composite types as well as scalar types or
access types.

C-33

TLD ADA COMPILER 1750A-ADA-2C

MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 37

IMPLEMENTATION-DEPENDENT ATTRIBUTES

TASKID

The attribute 'TaskID is used only with task objects. This
TLD-defined attribute returns the actual system address of the task
object.

PACKAGE SYSTEM SPECIFICATION

The following declarations are defined in package System:

type operatingsystems is (unix, netos, vms, os-x, msdos, bare);

type name is (none, ns16000, vax, af1750, z8002, z8001, gould,
pdpll, m68000, pe3200, caps, amdahl, i8086, i80286, i80386,
z80000, ns32000, ibmsl, m68020, nebula, name-x, hp);

system-name: constant name := name'target;

os name: constant operatingsystems := operatingsystems'system;

subtype priority is integer range 1..64; -- 1 is default
priority.

type address is range 0 .. 65535;
for address'size use 16;

type unsigned is range 0 .. 65535;
for address'size use 16;

type longaddress is range 0 .. 16#007FFFFF#;

pragma putline (1>1, 1>1, F>1 F , system-name,
os name, , , '<', '<');

-- Language Defined Constants

storage unit: constant := 16;
memory size: constant := 65536;
minmint: constant : -2**31;
maxint: constant := 2**31-1;
maxdigits: constant :z 9;
max mantissa: constant :- 31;
finedelta: constant :2.0*(-31=;
ticksper second: constant :u 10_000.0 -- Clock ticks - 100 msecs.
tick: constant : 1.0/tickspersecond;
ticksper rtc: constant : 65_536;
nulladdress: constant address :. 0;

C-34

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 38

REPRESENTATION CLAUSES

Record representation clauses are supported to arrange record
components within a record. Record components may not be specified
to cross a word boundary unless they are arranged to encompass two
or more whole words. A record component of type record that has
record representation clause applied to it may be allocated only at
bit 0. Bits are numbered from left to right with bit 0 indicating
the sign bit.

When there are holes (unused bits in a record specification), the
compiler initializes the entire record to permit optimum assignment
and compares of the record structure. A one-time initialization of
these holes is beneficial because it allows block compares and/or
assignments to be used throughout the program. If this
"optimization" is not performed, record assignments and compares
would have to be performed one component at a time, degrading the
code.

To avoid this initialization, the user should check to be certain
that no holes are left in the record structure. This may be done
by increasing the size of the objects adjacent to the hole or by
defining dummy record components that fill the holes. If the
latter method is used, any aggregates for the structure must
contain values for the holes as well as the "real" components.
Even with the extra components, this approach should optimize space
and speed in comparison to processing one component at a time.

If the component_clause of a record representation specification is
not in the same order as the componentlist of the record
specification, the entire record is initialized, as indicated
above.

Address clauses are supported for variable objects and designate
the virtual address of the object. The Compiler System uses
address specification to access objects allocated by non-Ada means
and does not handle the clause as a request to allocate the object
at the indicated address. Address clauses are not supported for
subprograms, packages, tasks, or task entries.

The Ada Compiler supports a representation specification to
indicate a memory type attribute for user types and objects. The
new specification:

for Ada_typeorobject'memorytype use { APC I MIXR
GIXR I GLOK I SPE I LUT I PBX I PBMC};

may be used to identify Ada types or objects that are to be
allocated to particular memory types.

For addresses greater than 64K, logical addresses must be used.

C-35

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 39

NOTE: Length clauses are supported for 'Size applied to objects
other than task and access type objects and denote the number of
bits allocated to the object.

Length clauses are supported for 'Storage_Size when applied to a
task type and denote the number of words of stack to be allocated
to the task.

Enumeration types that have an associated representation clause
cannot be passed as actual generic parameters for a generic
instantiation.

Enumeration representation clauses are supported for value ranges
of Integer'First to Integer'Last.

PACKAGE MACHINECODE (LRM 13.8)

The specification for this package is included in the
MACHINECODE_.ADA file.

CONVENTIONS FOR IMPLEMENTATION-GENERATED

NAMES DENOTING IMPLEMENTATION-DEPENDENT

COMPONENTS

The Compiler System defines no implementation dependent names for
compiler generated record components.

Two naming conventions are used by TLDacs. All visible run time
library subprograms and kernel services begin with the character
"A". Global Run Time System data names begin with the characters
"AS". The unique name created by the compiler for overload
resolution is composed of the user name appended with " $", plus
the first three characters of the compilation unit name, followed
by three digits representing the ordinal of the visible name within
the compilation unit. The maximum length of this name is 128
characters.

C-36

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 40

INTERPRETATION FOR EXPRESSIONS APPEARING

IN ADDRESS CLAUSES

Address expression values and type Address represent a location in
logical memory (the contents of the page register is not included
in the address). For objects, the address specifies a location
within the 64K word logical operand space. The 'Address attribute
applied to a subprogram represents a 16-bit word address within the
logical instruction space.

RESTRICTIONS ON UNCHECKED CONVERSIONS

Conversion of generic formal private types is not allowed.

IMPLEMENTATION-DEPENDENT CHARACTERISTICS

OF INPUT-OUTPUT PACKAGES

PACKAGE DIRECTIO (LRM 14.2.5)

PACKAGE IO_EXCEPTIONS (LRM 14.5)

PACKAGE LOWLEVELIO (LRM 14.6)

PACKAGE SEQUENTIAL_10 (LRM 14.2.3)

Input-Output packages are described in the Reference Document for
the TLD Ada 1750A Run Time SVstem.

PACKAGE TEXT_10 (LRM 14.3.10)

The following implementation-defined types are declared in TextIo:

type Count is integer range 0 .. 511;
subtype Field is Integer range 0 .. 127;

C-37

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 50

5.6.1 1750A PARAMETER VALUES

This chart provides sizes and values for 1750a parameters.

Parameter Size Value (Range)

Integer 16 bits -32768..32767
Long Integer 32 bits -2,147,483,648..

+2,147,483,648
Float 32 bits
Binary Exponent 8 bits
Mantissa 23 bits
Signed Bit 1 bit 6 decimal digits

LongFloat 48 bits
Binary Exponent 8 bits
Mantissa 39 bits
Signed Bit 1 bit 9 decimal digits

Fixed Point:
(single precision) 16 bits
(double precision) 32 bits

Access (Logical) 16 bits
(Physical) 23 bits

Boolean 1 bit (LSB of 16 bits)
Character 8 bits
String Unconstrained array of

characters where a character
is 1 byte of data

Array Descriptor 48 bits
Address 16 bits
Unsigned Integer 16 bits
Float'first -1.70141E+38
Float'last 1.70141E+38
Float'small 2.58494E-26
Float'safesmall 2.35099E-38
Float'large 1.93428E+25
Float'safelarge 2.12676E+37
Float'epsilon 9.53674E-07
Float'digits 6
Float'mantissa 21
Float'emax 84
Float'safeemax 124
Longfloat'first -1.70141183E+38
Long float'last 1.70141183E+38
Longfloat'small 2.35098870E-38
Longfloat'safesmall 2.35098870E-38
Longfloat'large 2.12676479E+37
Longfloat'safelarge 2.12676479E+37

C-38

TLD ADA COMPILER 1750A-ADA-2C
MIL-STD-1750A BARE MACHINE TARGET COMPILER 5 - 51

Parameter Size Value (Range)
---------------- ---- --------
Longfloat'epsilon 9.31322575E-10
Longjfloat'digits 9
Longfloat'mantissa 31
Longfloat'emax 124
Long float'safe_ernmax 124
Duration'Small 1/16384 sec.
Allocation Unit 16 bits
Stack Pointer Register 16 bits RF
Instruction Pointer Register 16 bits IC
Volatile Registers 16 bits RO R14
Non-Volatile Register 16 bits R15
RTS Default Task Stack 1024 words
RTS Size (minimum) 1200 words
Full Tasking Size 5800 words

(NOTE: word size = 16 bits)

C-39

